YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Điểm I thuộc đoạn SA. Biết mặt phẳng (MNI) chia khối chọp S.ABCD thành hai phần, phần chứa đỉnh S có thể tích bằng \(\frac{7}{{13}}\) lần phần còn lại. Tính tỉ số \(k = \frac{{IA}}{{IS}}.\)

    • A. \(\frac{3}{4}\)
    • B. \(\frac{1}{2}\)
    • C. \(\frac{1}{3}\)
    • D. \(\frac{2}{3}\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Dễ thấy thiết diện tạo bởi mặt phẳng (MNI) với hình chóp là hình ngũ giác IMNJH với MN // IJ. Ta có MN, AD, IH đồng qui tại E với \(EA = \frac{1}{3}ED\) và MN, CD, HJ đồng qui tại F với \(FC = \frac{1}{3}FD\), chú ý E, F cố định.

    Dùng định lí Menelaus với tam giác SAD ta có \(\frac{{HS}}{{HD}}.\frac{{ED}}{{EA}}.\frac{{IA}}{{SI}} = 1\).

    \( \Leftrightarrow \frac{{HS}}{{HD}}.3.k = 1 \Leftrightarrow \frac{{HS}}{{HD}} = \frac{1}{{3k}}\)

    Từ đó \(\frac{{d\left( {H,\left( {ABCD} \right)} \right)}}{{d\left( {S,\left( {ABCD} \right)} \right)}} = \frac{{HD}}{{SD}} = \frac{{3k}}{{3k + 1}}\).

    Suy ra \({V_{HJIAMNCD}} = {V_{H.DFE}} - {V_{I.AEM}} - {V_{J.NFC}}\).

    Đặt \(V = {V_{S.ABCD}}\) và \(S = {S_{ABCD}},h = d\left( {S,\left( {ABCD} \right)} \right)\) ta có \({S_{AEM}} = {S_{NFC}} = \frac{1}{8}S\) và \(\frac{{d\left( {I,\left( {ABCD} \right)} \right)}}{{d\left( {S,\left( {ABCD} \right)} \right)}} = \frac{{IA}}{{SA}} = \frac{k}{{k + 1}}\)

    Thay vào ta được \({V_{HJIAMNCD}} = \frac{1}{3}.\frac{{3k}}{{3k + 1}}h.\left( {\frac{9}{8}S} \right) - 2.\frac{1}{3}.\frac{k}{{k + 1}}h.\frac{1}{8}S=\frac{1}{8}.\frac{{21{k^2} + 25k}}{{\left( {3k + 1} \right)\left( {k + 1} \right)}}\).

    Theo giả thiết ta có \({V_{HJIAMNCD}} = \frac{{13}}{{20}}V\) nên ta có phương trình \(\frac{1}{8}.\frac{{21{k^2} + 25k}}{{\left( {3k + 1} \right)\left( {k + 1} \right)}} = \frac{{13}}{{20}}\), giải phương trình này được \(k = \frac{2}{3}\).

    ATNETWORK

Mã câu hỏi: 213747

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON