-
Đáp án B
Tốc độ sinh trưởng tối đa của quần thể đạt được khi quần thể vừa bước vào điểm uốn trên đồ thị sinh trưởng của quần thể, sau điểm uốn, tốc độ sinh trưởng của quần thể giảm dần.
Câu hỏi:Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Biết hình chóp S.ABC có thể tích bằng \(a^3\). Tính khoảng cách d từ điểm A đến mặt phẳng (SBC).
- A. \(d = \frac{{6{\rm{a}}\sqrt {195} }}{{65}}\)
- B. \(d = \frac{{{\rm{a}}\sqrt {195} }}{{65}}\)
- C. \(d = \frac{{4{\rm{a}}\sqrt {195} }}{{65}}\)
- D. \(d = \frac{{8{\rm{a}}\sqrt {195} }}{{195}}\)
Đáp án đúng: C
Gọi các điểm như hình vẽ.
Ta có \(AI \bot BC,SA \bot BC \Rightarrow BC \bot \left( {SAI} \right)\)
Suy ra \(BC \bot AK \Rightarrow AK = {d_{\left( {A,\left( {SBC} \right)} \right)}}\)
Ta có: \(V = {a^3},{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4} \Rightarrow SA = 4a\sqrt 3\)
Mà \(AI = \frac{{a\sqrt 3 }}{2}\)
Trong tam giác vuông SAI ta có \(\frac{1}{{A{K^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{I^2}}}\)
Vậy \(d = AK = \sqrt {\frac{{A{S^2}.A{I^2}}}{{A{S^2} + A{I^2}}}} = \frac{{4a\sqrt {195} }}{{65}}.\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ XÁC ĐỊNH GÓC VÀ KHOẢNG CÁCH TRONG KHỐI ĐA DIỆN
- Cho hình chóp S.ABCD có đáy là hình vuông cạnh a SD=a căn 17/2 hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB
- Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = a,AD = 2a; cạnh bên SA = a và vuông góc với đáy
- Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau và SA=a, SB=3a, SC=4a tìm độ dài đường cao SH của hình chóp
- Tính khoảng cách d từ điểm A đến mặt phẳng (A’BD) biết hình hộp chữ nhật ABCD.A’B’C’D’ có các cạnh AA' = 1,AB = 2,AD = 3.
- Tính theo a khoảng cách d giữa SA và CD biết khối chóp S.ABCD có thể tích bằng a^3. Mặt bên SAB là tam giác đều cạnh a và thuộc mặt phẳng vuông góc với đáy
- Cho lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh bằng a. Tính khoảng cách h từ đỉnh A đến mặt phẳng (A’BC)
- Tính khoảng cách d từ điểm A đến mặt phẳng (SBC) biết hình chóp S.ABC có góc ASB = góc CSB = 60 độ góc ASC=90 độ SA=SB=SC=a
- Tính khoảng cách d từ điểm B đến mặt phẳng (MAC) biết S.ABCD là hình chóp tứ giác đều có thể tích V=sqrt2/6
- Tính khoảng cách d giữa hai đường thẳng SA và BC biết hình chóp S.ABC có đáy là tam giác ABC vuông cân tại A, BC=2a, tam giác SBC là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy.
- Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC