YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SD = \frac{{a\sqrt {17} }}{2}, hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Tính chiều cao h của khối chóp H.SBD theo a.

    • A. \(h = \frac{{\sqrt 3 a}}{2}\)
    • B. \(h = \frac{{a\sqrt 3 }}{7}\)
    • C. \(h = \frac{{a\sqrt {21} }}{2}\)
    • D. \(h = \frac{{3a}}{5}\)

    Đáp án đúng: A

    Từ H kẻ HI vuông góc với BD \(\left( {I \in BD} \right)\) và \(HK \bot SI\)  suy ra \(HK \bot \left( {SBD} \right).\)

    Ta có \(SH = \sqrt {S{D^2} - H{D^2}} = a\sqrt 3\) và \(HI = \frac{{AC}}{4} = \frac{{a\sqrt 2 }}{4}\)

    Suy ra  \(HK = \frac{{SH.IH}}{{\sqrt {S{H^2} + I{H^2}} }} = \frac{{\frac{{{a^2}\sqrt 6 }}{4}}}{{\frac{{5a\sqrt 2 }}{4}}} = \frac{{a\sqrt 3 }}{5}\)

    Do đó chiều cao của khối chóp H.SBD là \(h = \frac{{a\sqrt 3 }}{5}.\)

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ XÁC ĐỊNH GÓC VÀ KHOẢNG CÁCH TRONG KHỐI ĐA DIỆN

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON