-
Câu hỏi:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA vuông góc với (ABC). Tính khoảng cách từ trọng tâm G của tam giác SAB đến (SAC)?
- A. \(\,\,\,\dfrac{{a\sqrt 3 }}{6}\).
- B. \(\,\,\dfrac{{a\sqrt 2 }}{6}\).
- C. \(\,\,\,\dfrac{{a\sqrt 3 }}{2}\).
- D. \(\,\,\,\dfrac{a \sqrt 2}{4}\)
Lời giải tham khảo:
Đáp án đúng: B
Gọi I là trung điểm của AB khi đó dựng \(IH \bot \left( {SAC} \right)\)
Khi đó \(IH = \dfrac{{OB}}{2} = \dfrac{{BD}}{4} = \dfrac{{a\sqrt 2 }}{4}\)
\(d\left( {G,\left( {SAC} \right)} \right) = \dfrac{2}{3}d\left( {I,\left( {SAC} \right)} \right)\)\(\, = \dfrac{2}{3}IH = \dfrac{{a\sqrt 2 }}{6}\)
Chọn B
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng xét dấu đạo hàm như hình vẽ: Đồ thị hàm số \(y = f\left( x \right)\) có tất cả bao nhiêu điểm cực trị?
- Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Với các giá trị nào của tham số m thì phương trình \(f\left( {\left| x \right|} \right) = 3m + 1\) có bốn nghiệm phân biệt.
- Cho khối chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(2a\). Tam giác \(SAB\) nằm trên mặt phẳng vuông góc với đáy và có \(SA = a,{\mkern 1mu} {\mkern 1mu} \,\,SB = a\sqrt 3 .\) Tính thể tích khối chóp \(SACD\).
- Cho hàm số \(y = {x^4} - 2{x^2} + m - 2\) có đồ thị \(\left( C \right)\). Gọi \(S\) là tập các giá trị của \(m\) sao cho đồ thị \(\left( C \right)\) có đúng một tiếp tuyến song song với trục Ox. Tổng tất cả các phần tử của \(S\) là
- Tìm tất cả các giá trị của m để hàm số \(y = {\cos ^3}x - 3{\sin ^2}x - m\cos x - 1\) đồng biến trên đoạn \(\left[ {0;\dfrac{\pi }{2}} \right].\)
- Người ta muốn xây một chiếc bể chứa nước có hình dạng là một khối hộp chữ nhật không nắp có thể tích bằng \(\dfrac{{500}}{3}{m^3}.\) Biết đáy hồ là một hình chữ nhật có chiều dài gấp đôi chiều rộng và giá thuê thợ xây là 100.000 đồng\(/{m^2}.\) Tìm kích thước của hồ để chi phí thuê nhân công ít nhất. Khi đó chi phí thuê nhân công là
- Cho hình chóp tứ giác \(S.ABCD\;\) có \(SA \bot \left( {ABCD} \right)\). \(ABCD\)là hình thang vuông tại A và B biết \(AB = 2a,\) \(AD = 3BC = 3a\). Tính thể tích khối chóp \(S.ABCD\;\) theo \(a\) biết góc giữa \(\left( {SCD} \right)\) và \(\left( {ABCD} \right)\) bằng \({60^0}.\)
- Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị của hàm\(y = f'\left( x \right)\) như hình vẽ. Xét hàm số \(g(x) = f\left( {{x^2} - 2} \right)\). Mệnh đề nào dưới đây sai ?
- Tập hợp tất cả các giá trị của tham số \(m\) để hàm số \(y = \dfrac{{mx - 4}}{{x - m}}\) đồng biến trên khoảng \(\left( { - 1; + \infty } \right)\) là:
- Biết \({m_0}\) là giá trị của tham số \(m\) để hàm số \(y = \dfrac{{ - mx + 2}}{{x + m}}\) có giá trị nhỏ nhất trên đoạn \(\left[ { - 1;0} \right]\) bằng \( - 3\). Khi đó:
- Cho hàm số \(y = {\rm{\;}} - {x^3} + 4{x^2} + 1\) có đồ thị là \(\left( C \right)\) và điểm \(M\left( {m;1} \right)\). Gọi \(S\) là tập hợp tất cả các giá trị thực của \(m\) để qua \(M\) kẻ được đúng 2 tiếp tuyến đến đồ thị \(\left( C \right)\). Tổng giá trị tất cả các phần tử của \(S\) bằng:
- Tìm tất cả các giá trị của tham số \(m\) để đồ thị hàm số \(y = \dfrac{{m{x^3} - 2}}{{{x^3} - 3x + 2}}\) có đúng hai đường tiệm cận đứng
- Hàm số sau \(y = - {x^3} + 3{x^2} - 4\) có đồ thị như hình vẽ sau. Tìm các giá trị của m đề phương trình \({x^3} - 3{x^2} + m = 0\) có hai nghiệm
- Điểm cực đại của hàm số sau \(y = - {x^3} + 3{x^2} + 2\)
- Tìm số giao điểm của đồ thị hàm số \(y = {x^4} - 3{x^2} - 5\) và trục hoành.
- Cho biết số cạnh của một khối chóp tam giác là?
- Khi ta tăng kích thước mỗi cạnh của khối hộp chữ nhật lên 5 lần thì thể tích khối hộp chữ nhật tăng bao nhiêu lần?
- Cho hình chóp là S.ABCD có đáy là hình vuông cạnh a và SA vuông góc với (ABC).
- Cho biết hàm số \(y = {x^3} - 2x + 1\) có đồ thị (C). Hệ số góc tiếp tuyến với (C) tại điểm M(- 1 ; 2) bằng:
- Điều kiện của tham số m đề hàm số sau \(y = \dfrac{{ - {x^3}}}{ 3} + {x^2} + mx\) nghịch biến trên R là
- Đồ thị hàm số sau \(y = \dfrac{{2x - 3} }{{x - 1}}\) có các đường tiệm cận đứng và tiệm cận ngang lần lượt là
- Cho hàm số sau \(y = {x^3} - 3x\). Mệnh đề nào dưới đây đúng ?
- Các hàm số sau đây, hàm số nào đồng biến trên R ?
- Có một chiếc xe ô tô có thùng đựng hàng hình hộp chữ nhật với kích thước 3 chiều lần lượt là 2m; 1,5m; 0,7m. Tính thể tích thùng đựng hàng của xe ôtô đó.
- Cho biết khối lăng trụ tam giác đều \(ABC.{A_1}{B_1}{C_1}\) có tất cả các cạnh bằng a. Gọi M là trung điểm của \(AA_1\). Thể tích khối chóp \(M.BC{A_1}\) là:
- Cho hàm số y = f(x) có bảng biến thiên như dưới đây. Mệnh đề nào sau đây sai ?
- Hàm số y = f(x) có bảng biến thiên như sau:Tập tất cả các giá trị của tham số m để phương trình f(x) + m=
- Ta gọi M, N là giao điểm của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) và đường thẳng d: y = x + 2. Hoành độ trung điểm I của đoạn MN là
- Tâm đối xứng của đồ thị hàm số nào đã cho sau đây cách gốc tọa độ một khoảng lớn nhất ?
- Cho hàm số sau \(f(x) = {x^3} + a{x^2} + bx + c\). Mệnh đề nào sau đây sai ?
- Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh \(SA = SB = SC = \dfrac{{a\sqrt 6 }}{3}\). Tính thể tích V của khối chóp đã cho.
- Hãy cho biết công thức tính thể tích của khối lăng trụ có diện tích đáy B và chiều cao h
- Chọn câu đúng. Trung điểm các cạnh của một tứ diện đều là
- Cho hàm số \(y = \dfrac{{x - 1} }{ {x + 2}}\) có đồ thị (C). Tiếp tuyến của (C) tại giao điểm của (C) với trục hoành có phương trình là:
- Cho hàm số sau y = f(x) có đồ thị như hình vẽ dưới đây. Mệnh đề nào dưới đây đúng ?
- Đường thẳng đã cho nào dưới đây là tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{2x}}{{x - 2}}\).
- Cho hình lăng trụ tam giác ABC.A’B’C’ có thể tích là V, khi đó thể tích của khối chóp A’.ABC là
- Chọn phương án đúng. Khối lập phương là khối đa diện đều loại
- Cho biết công thức tính thể tích của khối chóp có diện tích đáy B và chiều cao h
- Chọn câu đúng. Có bao nhiêu loại khối đa diện đều?