YOMEDIA
NONE
  • Câu hỏi:

    Biết \({m_0}\) là giá trị của tham số \(m\) để hàm số \(y = \dfrac{{ - mx + 2}}{{x + m}}\) có giá trị nhỏ nhất trên đoạn \(\left[ { - 1;0} \right]\) bằng \( - 3\). Khi đó:

    • A. \({m_0} \in \left( { - 5; - 2} \right)\)   
    • B. \({m_0} \in \left( {0;2} \right)\)    
    • C. \({m_0} \in \left( { - 2;0} \right)\)  
    • D. \({m_0} \in \left( {2;5} \right)\) 

    Lời giải tham khảo:

    Đáp án đúng: C

    TXĐ: \(D = \mathbb{R}\backslash \left\{ { - m} \right\}\). Ta có: \(y' = \dfrac{{ - {m^2} - 2}}{{{{\left( {x + m} \right)}^2}}} < 0{\mkern 1mu} {\mkern 1mu} \forall x \in D\).

    Do đó hàm số nghịch biến trên \(\left[ { - 1;0} \right]\) nên \(\mathop {\min }\limits_{\left[ { - 1;0} \right]} y = y\left( 0 \right) = \dfrac{2}{m}\).

    Theo bài ra ta có: \(\dfrac{2}{m} = {\rm{\;}} - 3 \Leftrightarrow m =  - \dfrac{2}{3}\).

    Vậy \({m_0} \in \left( { - 2;0} \right)\).

    Chọn C.

    ATNETWORK

Mã câu hỏi: 302304

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON