YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) có đồ thị là \(\left( C \right)\). Gọi \(S\) là tập hợp tất cả các giá trị của tham số \(m\) để đường thẳng \(d:\,\,y = mx + m + 1\) cắt \(\left( C \right)\) tại 2 điểm \(A,\,B\) sao cho độ dài đoạn thẳng \(AB\) bằng \(2\sqrt 5 \). Tích các phần tử của \(S\) là 

    • A. \(2\)      
    • B.
    • C. \( - 2\)  
    • D.  \( - 1\) 

    Lời giải tham khảo:

    Đáp án đúng: B

    TXĐ:   \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)

    Phương trình hoành độ giao điểm của đường thẳng \(d\) và đồ thị hàm số \(\left( C \right)\) là:

    \(\begin{array}{l}\dfrac{{x - 1}}{{x + 1}} = mx + m + 1\\ \Leftrightarrow \left( {x - 1} \right) = \left( {mx + m + 1} \right)\left( {x + 1} \right)\\ \Leftrightarrow m{x^2} + mx + mx + m + x + 1 = x - 1\\ \Leftrightarrow m{x^2} + 2mx + m + 2 = 0\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)

    Đường thẳng \(d\) cắt đồ thị hàm số \(\left( C \right)\) tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có 2 nghiệm phân biệt khác \( - 1\)

    Suy ra   \(\left\{ \begin{array}{l}\Delta ' > 0\\m.{\left( { - 1} \right)^2} + 2m.\left( { - 1} \right) + m + 2 \ne 0\end{array} \right. \Leftrightarrow \Delta ' > 0 \Leftrightarrow {m^2} - m\left( {m + 2} \right) > 0 \Leftrightarrow m < 0\)

    Với \(m < 0,\) phương trình (1) có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn:  \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - 2m}}{m}\\{x_1}.{x_2} = \dfrac{{m + 2}}{m}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} + {x_2} =  - 2\\{x_1}.{x_2} = \dfrac{{m + 2}}{m}\end{array} \right.\)

    Suy ra, đường thẳng \(d\) cắt đồ thị hàm số \(\left( C \right)\) tại 2 điểm phân biệt \(A\left( {{x_1};m{x_1} + m + 1} \right);\,\,\,\,B\left( {{x_2};m{x_2} + m + 1} \right)\)

    Ta có:

     \(\begin{array}{l}AB = 2\sqrt 5 \\ \Leftrightarrow \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left[ {\left( {m{x_1} + m + 1} \right) - \left( {m{x_2} + m + 1} \right)} \right]}^2}}  = 2\sqrt 5 \\ \Leftrightarrow \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {m^2}{{\left( {{x_1} - {x_2}} \right)}^2}}  = 2\sqrt 5 \end{array}\)

    \(\begin{array}{l} \Leftrightarrow \left( {{m^2} + 1} \right){\left( {{x_1} - {x_2}} \right)^2} = 20\\ \Leftrightarrow \left( {{m^2} + 1} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right] = 20\\ \Leftrightarrow \left( {{m^2} + 1} \right)\left[ {{{\left( { - 2} \right)}^2} - 4.\dfrac{{m + 2}}{m}} \right] = 20\\ \Leftrightarrow \left( {{m^2} + 1} \right)\dfrac{{ - 8}}{m} = 20\end{array}\)

    \(\begin{array}{l} \Leftrightarrow  - 8{m^2} - 8 = 20m\\ \Leftrightarrow \left[ \begin{array}{l}m =  - \dfrac{1}{2}\\m =  - 2\end{array} \right.\,\,\,\,\left( {t/m} \right)\end{array}\)

    Vậy tích các giá trị của \(m\) thỏa mãn là      \(S = \left( { - \dfrac{1}{2}} \right).\left( { - 2} \right) = 1\)

    Đáp án  B

    ATNETWORK

Mã câu hỏi: 332867

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON