YOMEDIA
NONE
  • Câu hỏi:

    Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + 1\) có đồ thị (C). Hình bên  là một phần của đồ thị hàm số \(g\left( x \right) = f'\left( x \right)\) trong đó a, b, c là các hằng số thực. Có bao nhiêu biểu thức nhận giá trị dương trong các biểu thức sau \(ab,ac,3a + 3b + c\) và \(a - b + c.\)

    • A. 1
    • B. 3
    • C. 2
    • D. 0

    Lời giải tham khảo:

    Đáp án đúng: C

    Hàm số \(g\left( x \right) = 3a{x^2} + 2bx + c\) có đồ thị (C).

    Ta có ngay \(g\left( 0 \right) > 0 \Rightarrow c > 0\)

    Cho (C) giao với trục hoành ta được \(3a{x^2} + 2bx + c = 0\) có 2 nghiệm dương phân biệt.
    \(\Leftrightarrow \left\{ \begin{array}{l} a \ne 0\\ \Delta ' = {b^2} - 3ac > 0\\ {x_1} + {x_2} = - \frac{{2b}}{{3a}} > 0\\ {x_1}{x_2} = \frac{c}{{3a}} > 0 \end{array} \right.\)

    \(\Rightarrow a > 0,b < 0\) 
    vì \(c > 0 \Rightarrow ac > 0,a - b + c > 0\)

    ATNETWORK

Mã câu hỏi: 1324

Loại bài: Bài tập

Chủ đề : Đạo hàm và ứng dụng

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON