YOMEDIA
NONE
  • Câu hỏi:

    Cho hình nón tròn xoay đỉnh \(S,\)đáy là đường tròn tâm \(O,\) bán kính đáy \(r = 5\). Một thiết diện qua đỉnh là tam giác \(SAB\) đều có cạnh bằng 8. Khoảng cách từ \(O\) đến mặt phẳng \(\left( {SAB} \right)\) bằng

    • A. \(\dfrac{{4\sqrt {13} }}{3}\).  
    • B. \(\dfrac{{3\sqrt {13} }}{4}\). 
    • C. \(3.\)   
    • D. \(\dfrac{{\sqrt {13} }}{3}\) 

    Lời giải tham khảo:

    Đáp án đúng: B

    Gọi I là trung điểm của AB, H là chân đường vuông góc của O lên mp (SAB)

    \(\begin{array}{l}SO = \sqrt {S{A^2} - O{A^2}}  = \sqrt {{8^2} - {5^2}}  = \sqrt {39} \\OI = \sqrt {O{A^2} - I{A^2}}  = \sqrt {{5^2} - {4^2}}  = 3\\\dfrac{1}{{O{H^2}}} = \dfrac{1}{{S{O^2}}} + \dfrac{1}{{O{I^2}}} = \dfrac{1}{{39}} + \dfrac{1}{9} = \dfrac{{16}}{{117}}\\ \Rightarrow OH = \dfrac{{3\sqrt {13} }}{4}\end{array}\)

    Chọn B

    ATNETWORK

Mã câu hỏi: 340014

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON