Giải bài 45 tr 163 sách BT Toán lớp 9 Tập 1
Cho tam giác \(ABC\) cân tại \(A,\) các đường cao \(AD\) và \(BE\) cắt nhau tại \(H.\) Vẽ đường tròn \((O)\) có đường kính \(AH.\) Chứng minh rằng:
\(a)\) Điểm \(E\) nằm trên đường tròn \((O);\)
\(b)\) \(DE\) là tiếp tuyến của đường tròn \((O).\)
Hướng dẫn giải chi tiết
Hướng dẫn giải
Sử dụng kiến thức:
+) Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn.
Lời giải chi tiết
\(a)\) Gọi \(O\) là trung điểm của \(AH\)
Tam giác \(AEH\) vuông tại \(E\) có \(EO\) là đường trung tuyến nên:
\( EO = OA = OH =\displaystyle{{AH} \over 2}\) (tính chất tam giác vuông)
Vậy điểm \(E\) nằm trên đường tròn \(\left( \displaystyle{O;{{AH} \over 2}} \right)\)
\(b)\) Ta có: \(OH = OE\)
suy ra tam giác \(OHE\) cân tại \(O\)
suy ra: \(\widehat {OEH} = \widehat {OHE}\) \( (1)\)
Mà \(\widehat {BHD} = \widehat {OHE}\) (đối đỉnh) \((2)\)
Trong tam giác \(BDH\) ta có:
\(\widehat {HDB} = 90^\circ \)
Suy ra: \(\widehat {HBD} + \widehat {BHD} = 90^\circ \) \((3)\)
Từ \((1),\) \((2)\) và \((3)\) suy ra:
\(\widehat {OEH} + \widehat {HBD} = 90^\circ \) \((4)\)
Tam giác \(ABC\) cân tại \(A\) có \(AD ⊥ BC\) nên AD là đường trung tuyến, suy ra \(BD = CD\)
Tam giác \(BCE\) vuông tại \(E\) có \(ED\) là đường trung tuyến nên:
\(ED = BD = \displaystyle{{BC} \over 2}\) (tính chất tam giác vuông).
Suy ra tam giác \(BDE\) cân tại \(D\)
Suy ra: \(\widehat {DBE} = \widehat {DEB}\) \((5)\)
Từ \((4)\) và \((5)\) suy ra: \(\widehat {OEH} + \widehat {DEB} = 90^\circ \) hay \(\widehat {DEO} = 90^\circ \)
Suy ra: \(DE ⊥ EO.\) Vậy \(DE\) là tiếp tuyến của đường tròn \((O).\)
-- Mod Toán 9 HỌC247
-
Chứng minh CB là tiếp tuyến của tâm O
bởi Đan Nguyên 26/01/2019
bài 1 : cho đg tròn tâm O dây AB khác đg kính . Qua O kẻ đt vuông góc AB cắt tiếp tuyến tại A tại A của đg tròn tâm C
a, Cmr : CB là tiếp tuyến của tâm O
b, biết R = 15cm , AB = 24cm . tính OC
BÀI 2 : Cho tg ABC có AB = 5cm , AC = 12cm , BC =13cm . VE đg tròn tâm B , R =5cm CMR : AC là tiếp tuyến của đg tròn tâm B
Theo dõi (0) 1 Trả lời -
Chứng minh NA, NB là các tiếp tuyến của (O)
bởi Truc Ly 29/01/2019
cho (O) . lấy N bất kì ngoài (O). trên (O) lấy A,B sao cho NA=NB; ON lần lượt là p/g các góc ANB và AOB. c/m NA,NB là các tiếp tuyến của (O)
Theo dõi (0) 1 Trả lời -
Bài 5.2 trang 164 sách bài tập toán 9 tập 1
bởi hành thư 10/10/2018
Bài 5.2 - Bài tập bổ sung (Sách bài tập trang 164)
Cho đường tròn (O) đường kính AB, dây CD vuông góc với OA tại trung điểm của OA. Gọi M là điểm đối xứng với O qua A. Chứng minh rừng MC là tiếp tuyến của đường tròn ?
Theo dõi (0) 1 Trả lời