YOMEDIA
NONE

Toán 7 Kết nối tri thức Luyện tập chung trang 58


Để học tốt bài Luyện tập chung trang 58 xin mời các em học sinh cùng tham khảo bài giảng dưới đây bao gồm các kiến thức được trình bày cụ thể và chi tiết, cùng với các dạng bài tập minh họa giúp các em dễ dàng nắm vững được trọng tâm bài học. Mời các em cùng tham khảo!

ATNETWORK
YOMEDIA
 

Tóm tắt lý thuyết

1.1. Tiên đề Euclid - Tính chất của hai đường thẳng song song

a) Tiên đề Euclid

Qua một điểm nằm ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó.

Nhận xét: Trong hình cho trên, nếu điểm M nằm ngoài đường thẳng a thì đường thẳng b đi qua M và song song với a là duy nhất.

Chú ý: Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng còn lại.

b) Tính chất của hai đường thẳng song song

Nếu một đường thẳng cắt hai đường thẳng song song thì:

+ Hai góc so le trong bằng nhau

+ Hai góc đồng vị bằng nhau

Nhận xét:

+ Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia.

Nếu c \( \bot \) a, a // b thì c \( \bot \) b

+ Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau.

Nếu a // b ; b // c thì a // c

1.2. Định lí và chứng minh định lí

a) Định lí - Giả thiết, kết luận của định lí

- Có khẳng định “(Nếu) hai góc đối đỉnh thì (hai góc đó) bằng nhau" đã được suy ra từ điều đúng đã biết là “hai góc kề bù có tổng số đo bằng 180°”. Đó là một định lí.

- Trong một định lí ta cần phân biệt giả thiết và kết luận của nó. Chẳng hạn: Nếu hai góc đối đỉnh thì hai góc đó bằng nhau.

Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng:

Nếu …. thì…

- Phần giữa từ “ nếu” và từ “thì” thì giả thiết của định lí;

- Phần sau từ “ thì” là kết luận của định lí.

b) Chứng minh định lí

Chứng minh một định lí là dùng lập luận để từ giả thiết và biết suy ra kết luận của định lí.

Chẳng hạn, ta chứng minh định lí nói trong tình huống mở đầu “Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc đồng vị bằng nhau” như sau:

Bài tập minh họa

Câu 1: Cho hình sau, biết MN//BC, \(\widehat {ABC} = 60^\circ ,\widehat {MNC} = 150^\circ \).

Hãy tính số đo các góc BMN và ACB.

Hướng dẫn giải

Vì MN//BC nên \(\widehat {AMN} = \widehat {ABC}\)( 2 góc đồng vị), mà \(\widehat {ABC} = 60^\circ \)nên \(\widehat {AMN} = 60^\circ \)

Vì \(\widehat {AMN} + \widehat {BMN} = 180^\circ \) (2 góc kề bù)

\(\begin{array}{l} \Rightarrow 60^\circ  + \widehat {BMN} = 180^\circ \\ \Rightarrow \widehat {BMN} = 180^\circ  - 60^\circ  = 120^\circ \end{array}\)

Vì \(\widehat {ANM} + \widehat {MNC} = 180^\circ \)(2 góc kề bù)

\(\begin{array}{l} \Rightarrow \widehat {ANM} + 150^\circ  = 180^\circ \\ \Rightarrow \widehat {ANM} = 180^\circ  - 150^\circ  = 30^\circ \end{array}\)

Vì MN//BC nên \(\widehat {ANM} = \widehat {ACB}\) ( 2 góc đồng vị), mà \(\widehat {ANM} = 30^\circ \)nên \(\widehat {ACB} = 30^\circ \).

Câu 2: Em hãy chứng minh định lí: “ Hai góc kề bù bằng nhau thì mỗi góc là một góc vuông”

Hướng dẫn giải

Ta có: \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) ( 2 góc kề bù)

Mà \(\widehat {{A_1}} = \widehat {A_2^{}}\)

\(\begin{array}{l} \Rightarrow \widehat {{A_1}} + \widehat {{A_1}} = 180^\circ \\ \Rightarrow 2.\widehat {{A_1}} = 180^\circ \\ \Rightarrow \widehat {{A_1}} = 180^\circ :2 = 90^\circ \end{array}\)

Vậy \(\widehat {{A_1}} = \widehat {A{}_2} = 90^\circ \) (đpcm)

Luyện tập bài Luyện tập trang 58 Toán 7 KNTT

Qua bài giảng ở trên, giúp các em học sinh:

- Hệ thống và ôn tập lại nhưng nội dung đã học

- Áp dụng vào giải các bài tập SGK

3.1. Bài tập trắc nghiệm bài Luyện tập trang 58 Toán 7 KNTT

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 7 Kết nối tri thức Chương 3 Luyện tập chung trang 58 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

3.2. Bài tập SGK bài Luyện tập trang 58 Toán 7 KNTT

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 7 Kết nối tri thức Chương 3 Luyện tập chung trang 58 để giúp các em nắm vững bài học và các phương pháp giải bài tập.

Giải bài 3.27 trang 58 SGK Toán 7 Kết nối tri thức tập 1 - KNTT

Giải bài 3.28 trang 58 SGK Toán 7 Kết nối tri thức tập 1 - KNTT

Giải bài 3.29 trang 58 SGK Toán 7 Kết nối tri thức tập 1 - KNTT

Giải bài 3.30 trang 58 SGK Toán 7 Kết nối tri thức tập 1 - KNTT

Giải bài 3.31 trang 58 SGK Toán 7 Kết nối tri thức tập 1 - KNTT

Hỏi đáp bài Luyện tập trang 58 Toán 7 KNTT

Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!

Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!

-- Mod Toán Học 7 HỌC247

NONE
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON