Giải bài 10 trang 84 SGK Toán 7 Chân trời sáng tạo tập 2
Trên đường thẳng a lấy ba điểm phân biệt I, J, K (J ở giữa I và K). Kẻ đường thẳng b vuông góc với a tại J, trên b lấy điểm M khác điểm J. Đường thẳng qua I vuông góc với MK cắt b tại N. Chứng minh rằng KN vuông góc với MI.
Hướng dẫn giải chi tiết Bài 10
Phương pháp giải
Ta chứng minh N là trực tâm của tam giác MIK
Lời giải chi tiết
Vì b vuông góc với a tại J (theo giả thiết) và M thuộc b
\( \Rightarrow MJ \bot IK\)(1)
Vì đường thẳng qua I vuông góc với MK và cắt b tại N (gọi C là giao của MK và đường thẳng qua I vuông góc với MK)
\( \Rightarrow MK \bot IC\)(2)
Từ (1) và (2)\( \Rightarrow \)N là trực tâm ΔMIK
\( \Rightarrow \)NK là đường cao của ΔMIK (Các đường cao trong tam giác đi qua trực tâm)
\( \Rightarrow \)KN \( \bot \)MI
-- Mod Toán 7 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 8 trang 84 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 84 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 65 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 65 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 65 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 65 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 65 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 65 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 66 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 66 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 66 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 10 trang 66 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST