YOMEDIA
NONE

Giải bài 7 trang 66 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST

Giải bài 7 trang 66 SBT Toán 7 Chân trời sáng tạo tập 2

Cho tam giác ABC có ba đường phân giác AD, BE, CF đồng quy tại I. Vẽ IH vuông góc với BC tại H. Chứng minh rằng \(\widehat {BIH} = \widehat {CI{\rm{D}}}\).

ATNETWORK

Hướng dẫn giải chi tiết Bài 7

Phương pháp giải

Sử dụng mối quan hệ giữa các góc trong tam giác để chứng minh

Lời giải chi tiết

Ta có:

\(\widehat {DIC} = {180^o} - \widehat {AIC} = \widehat {IAC} + \widehat {IC{\rm{A}}} = \frac{{\widehat {{A^{}}} + \widehat C}}{2}\)

Ta có: \(\widehat {BIH} = {90^o} - \frac{{\widehat B}}{2} = \frac{{{{180}^o} - \widehat B}}{2} = \frac{{\widehat {{A^{}}} + \widehat C}}{2} = \widehat {DIC}\)

Suy ra: \(\widehat {BIH} = \widehat {CI{\rm{D}}}\)

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 7 trang 66 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON