Nội dung bài giảng Bài tập cuối chương 7 môn Toán lớp 7 chương trình Chân trời sáng tạo được HOC247 biên soạn và tổng hợp giới thiệu đến các em học sinh, giúp các em tìm hiểu về Biểu thức số, biểu thức đại số, đa thức một biến,.... Để đi sâu vào tìm hiểu và nghiên cứu nội dung vài học, mời các em cùng tham khảo nội dung chi tiết trong bài giảng sau đây.
Tóm tắt lý thuyết
1.1. Biểu thức số, biểu thức đại số
a) Biểu thức số
Ta đã biết: Các sô được nôi với nhau bởi dâu các phép tính cộng, trừ, nhân, chia, nâng lên luỹ thừa tạo thành một biểu thức.
Chẳng hạn: 3 + 7 - 2; 4 . 5 : 2; 2(5 + 8); 2 . 34 + 9; 5 . 23 - 4 . 32 là những biểu thức.
Những biểu thức như trên còn được gọi là biểu thức số.
b) Biểu thức đại số
Biểu thức gồm các số và các chữ (đại điện cho số) được nối với nhau bởi các kí hiệu phép toán cộng, trừ, nhân, chia, nâng lên luỹ thừa được gọi là biểu thức đại số. Các chữ trong biểu thức đại số được gọi là biến số (hay gọi tắt là biến) |
---|
Lưu ý: Trong biểu thức đại số
- Người ta cũng dùng các dấu ngoặc đề chỉ thứ tự thực hiện các phép tính.
- Vì biến đại điện cho số nên khi thực hiện các phép tính trên các biến, ta có thể áp dụng những tính chất, quy tắc phép tính như trên các số. Chẳng hạn:
x + y = y + x; x + (y + z) = (x + y) + z; x(y + z) = xy + xz.
xy = yx; x(yz) = (xy)z; -x(y - z) = - xy + xz;....
c) Giá trị của biểu thức đại số
Đề tính giá trị của một biểu thức đại số tại những giá trị cho trước của các biến, ta thay các giá trị cho trước đó vào biểu thức rồi thực hiện các phép tính.
1.2. Đa thức một biến
a) Đa thức một biến
Đơn thức một biển là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và biến đó. |
---|
Chú ý: Ta có thể thực hiện các phép tính công, trừ, nhân, chia đơn thức cùng một biến.
Nhận xét:
- Phép cộng và phép trừ hai đơn thức cùng một biến chỉ thực hiện được khi biến có cùng số mũ.
- Phép chia hết của hai đơn thức cùng một biến chỉ thực hiện được khi số mũ của biến trong đơn thức bị chia lớn hơn hoặc bằng số mũ của biến trong đơn thức chia.
Đa thức một biến là tổng của những đơn thức cùng một biến. Đơn thức một biến cũng là đa thức một biến. |
---|
Quy ước: P = 0 được gọi là đa thức không.
b) Cách biểu diễn đa thức một biến
Bậc của đa thức một biên (khác đa thức không, đã được viết thành đa thức thu gọn) là số mũ lớn nhât của biến trong đa thức đó. |
---|
Chú ý:
- Số thực khác 0 là đa thức bậc 0.
- Số 0 được coi là đa thức không cỏ bậc
c) Giá trị của đa thức một biến
Cho đa thức A(x) = 2x4 - 8x2 + 5x - 7.
Ta có:
A(3)=2 . 34 - 8 . 32 + 5 . 3 - 7 = 162 - 72 + 15 - 7 = 98.
Ta nói đa thức A(x) có giá trị là 98 khi x = 3.
d) Nghiệm của đa thức một biến
Nếu đa thức P(x) có giá trị bằng 0 tại x = a thì ta nói a (hoặc x = a) là một nghiệm của đa thức đó. |
---|
1.3. Phép cộng và phép trừ đa thức một biến
a) Phép cộng hai đa thức một biến
Để cộng hai đa thức một biến, ta có thể thực hiện theo một trong hai cách sau:
- Cách 1: Nhóm các đơn thức cùng luỹ thừa của biến rồi thực hiện phép công.
- Cách 2: Sắp xếp các đơn thức của hai đa thức cùng theo thứ tự luỹ thừa tăng dần (hoặc giảm dân) của biến và đặt tính dọc sao cho luỹ thừa giống nhau ở hai đa thức thắng cột với nhau, rời thực hiện cộng theo cột.
b) Phép trừ hai đa thức một biến
Để trừ hai đa thức một biến, ta có thể thực hiện theo một trong hai cách sau:
- Cách 1: Nhóm các đơn thức cùng luỹ thừa của biến rồi thực hiện phép trừ.
- Cách 2: Sắp xếp các đơn thức của hai đa thức cùng theo thứ tự luỹ thừa tăng dần (hoặc giảm dân) của biên và đặt tính dọc sao cho luỹ thừa giông nhau ở hai đa thức thẳng cột với nhau, rồi thực hiện trừ theo cột.
c) Tính chất của phép cộng đa thức một biến
Cho A, B, C là các đa thức một biến với cùng một biến số. Ta có:
* A + B = B + A;
* A + (B + C) = (A + B) + C.
1.4. Phép nhân và phép chia đa thức một biến
a) Phép nhân hai đa thức một biến
Muốn nhân một đa thức với một đa thức, ta nhân mỗi đơn thức của đa thức này với từng đơn thức của đa thức kia rồi cộng các tích với nhau.
b) Phép chia hai đa thức một biến
*Chia đa thức cho đa thức (chia hết)
Cho hai đa thức P và Q (với Q \( \ne \) 0). Ta nói đa thức P chia hết cho đa thức Q nếu có đa thức M sao cho P = Q . M |
---|
TTa gọi P là đa thức bị chia, Q là đa thức chia và M là đa thức thương (gọi tắt là thương).
Kí hiệu M = P : Q hoặc \(M = \frac{P}{Q}\).
Ví dụ: Muốn chia đa thức 3x6 - 5x5 + 7x4 cho 2x3 ta thực hiện như sau:
\(\begin{array}{l}
\left( {3{x^6}\; - {\rm{ }}5{x^5}\; + {\rm{ }}7{x^4}} \right):2{x^3} = \left( {3{x^6}:2{x^3}} \right) + \left( { - {\rm{ }}5{x^5}:2{x^3}} \right) + \left( {7{x^4}:2{x^3}} \right)\\
= \frac{3}{2}{x^3} - \frac{5}{2}{x^2} + \frac{7}{2}x
\end{array}\)
*Chia đa thức cho đa thức (chia có dư)
Ví dụ: Đề thực hiện phép chia đa thức \(P\left( x \right) = 3{x^2} - 5x + 2\) cho \(Q\left( x \right) = x - 2\) thì ta làm tương tự như trên và có:
Phép chia nêu trên có dư là 4 và ta có: \(3{x^2} - 5x + 2 = \left( {x - 2} \right)\left( {3x + 1} \right) + 4\).
Nhận xét: Khi chia đa thức A cho đa thức B với thương là Q, dư là R thì A = B.Q + R, trong đó bậc của R nhỏ hơn bậc của B.
c) Tính chất của phép nhân đa thức một biến
Cho A, B, C là các đa thức một biến với cùng một biến số. Ta có:
* A . B = B . A;
* A . (B . C) = (A . B) . C.
Bài tập minh họa
Câu 1: Hãy tính giá trị của biểu thức \(3{x^2} - 4x + 2\) khi x = 2
Hướng dẫn giải
Thay x = 2 vào biểu thức đã cho, ta có :
\(3{x^2} - 4x + 2 = {3.2^2} - 4.2 + 2 = 12 - 8 + 2= 6\)
Câu 2: Tính giá trị của đa thức \(M(t)= - 5{t^3} + 6{t^2} + 2t + 1\) khi \(t = -2\).
Hướng dẫn giải
Thay t = -2 đã cho vào đa thức ta được : \(M(-2) = - 5.{( - 2)^3} + 6.{( - 2)^2} + 2.( - 2) + 1= 61\)
Câu 3: Cho P(x) = \({x^4} + {x^2} - 9x - 9\). Hỏi mỗi số x = -1, x = 1 có phải là một nghiệm của P(x) không?
Hướng dẫn giải
Ta có : P(x) = \({x^4} + {x^2} - 9x - 9\)
Thay x = 1 vào ta có : P(1) =\({x^3} + {x^2} - 9x - 9 = {1^3} + {1^2} - 9.1 - 9 = - 16\)
Thay x = -1 vào ta có : P(-1) = \({x^3} + {x^2} - 9x - 9 = {( - 1)^3} + {( - 1)^2} - 9.( - 1) - 9 = 0\)
Vậy x = -1 là nghiệm của P(x)
Câu 4: Cho hai đa thức P(x) = \(2{x^3} - 9{x^2} + 5\) và Q(x) = \(2{x^2} + 4{x^3} - 7x\). Hãy tính P(x) – Q(x) bằng hai cách.
Hướng dẫn giải
Cách 1:
Ta có P(x) - Q(x)
= 2x3 – 9x2 + 5 – (2x2 + 4x3 – 7x)
= 2x3 – 9x2 + 5 – 2x2 – 4x3 + 7x
= (2x3 – 4x3) + (-9x2 – 2x2) + 7x + 5
= -2x3 – 11x2 + 7x + 5
Cách 2:
P(x) = 2x3 – 9x2 + 5
Q(x) = 4x3 + 2x2 – 7x
Câu 5: Thực hiện phép tính \((x - 4) + \left[ {({x^2} + 2x) + (7 - x)} \right]\)
Hướng dẫn giải
\(\begin{array}{l}(x - 4) + \left[ {({x^2} + 2x) + (7 - x)} \right]\\ = x - 4 + ({x^2} + 2x + 7 - x)\\ = x - 4 + {x^2} + 2x + 7 - x\\ = {x^2} + (x + 2x - x) + ( - 4 + 7)\\ = {x^2} + 2x + 3\end{array}\)
Câu 6: Tìm đa thức theo biến x biểu thị thể tích của hình hộp chữ nhật có kích thước như Hình 2.
Hướng dẫn giải
Thể tích hình hộp chữ nhật là:
\(\begin{array}{l}(x + 3).(x - 1).(x - 2)\\ = \left[ {(x + 3).(x - 1)} \right].(x - 2)\\ = (x.x - 1.x + 3.x - 3.1)(x - 2)\\ = ({x^2} + 2x - 3)(x - 2)\\ = {x^2}.x - 2.{x^2} + 2x.x - 2x.2 - 3.x + 3.2\\ = {x^3} - 7x + 6\end{array}\)
Câu 7: Thực hiện các phép chia sau \(\frac{{9{x^2} + 5x + x}}{{3x}}\) và \(\frac{{(2{x^2} - 4x) + (x - 2)}}{{2 - x}}\)
Hướng dẫn giải
\(\frac{{9{x^2} + 5x + x}}{{3x}} = \frac{{9{x^2} + 6x}}{{3x}} = \frac{{9{x^2}}}{{3x}} + \frac{{6x}}{{3x}} = 3x + 2\)
\(\frac{{2{x^2} - 3x - 2}}{{2 - x}} = \frac{{2{x^2} - 3x - 2}}{{ - x + 2}} = - 2x - 1\)
Luyện tập Ôn tập Chương 7 Toán 7 CTST
Qua bài giảng này giúp các em học sinh:
- Ôn tập và hệ thống lại các kiến thức trọng tâm của chương.
- Áp dụng các kiến thức đã học vào giải các bài tập một cách dễ dàng.
3.1. Bài tập trắc nghiệm Ôn tập Chương 7 Toán 7 CTST
Để củng cố bài học xin mời các em cùng làm Bài kiểm tra Trắc nghiệm Toán 7 Chân trời sáng tạo Bài tập cuối chương 7 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2. Bài tập SGK cuối Chương 7 Toán 7 CTST
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 7 Chân trời sáng tạo Bài tập cuối chương 7 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Giải bài 1 trang 42 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 42 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 42 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 42 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 42 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 42 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 42 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 42 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 42 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 10 trang 42 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 11 trang 42 SGK Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 1 trang 33 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 2 trang 33 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 3 trang 33 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 4 trang 33 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 5 trang 33 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 6 trang 33 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 7 trang 33 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 8 trang 34 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 9 trang 34 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 10 trang 34 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 11 trang 34 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Giải bài 12 trang 34 SBT Toán 7 Chân trời sáng tạo tập 2 - CTST
Hỏi đáp Ôn tập Chương 7 Toán 7 CTST
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
-- Mod Toán Học 7 HỌC247