Bài tập 54 trang 211 SGK Toán 12 NC
Nếu \(z = - \sin \varphi - i\cos \varphi \) thì acgumen của z bằng:
(A) \( - \frac{\pi }{2} + \varphi + k2\pi \left( {k \in Z} \right)\)
(B) \( - \frac{\pi }{2} - \varphi + k2\pi \left( {k \in Z} \right)\)
(C) \(\frac{\pi }{2} + \varphi + k2\pi \left( {k \in Z} \right)\)
(D) \(\pi - \varphi + k2\pi \left( {k \in Z} \right)\)
Hướng dẫn giải chi tiết
Ta có
\(\begin{array}{l}
z = - \cos \left( {\frac{\pi }{2} - \varphi } \right) - i\sin \left( {\frac{\pi }{2} - \varphi } \right)\\
= \cos \left( {\pi + \frac{\pi }{2} - \varphi } \right) + i\sin \left( {\pi + \frac{\pi }{2} - \varphi } \right)\\
= \cos \left( {\frac{{3\pi }}{2} - \varphi } \right) + i\sin \left( {\frac{{3\pi }}{2} - \varphi } \right)
\end{array}\)
Argumen của z bằng
\(\begin{array}{l}
\frac{{3\pi }}{2} - \varphi + k2\pi \\
= - \frac{\pi }{2} - \varphi + \left( {k + 1} \right)2\pi \left( {k \in Z} \right)
\end{array}\)
Chọn (B).
-- Mod Toán 12 HỌC247
-
Cho số phức z thỏa mãn hệ thức: \(\small (1+i)z+(3-i)\bar{z}=2-6i\) Tính môđun của z.
Theo dõi (0) 1 Trả lời