Hoạt động khám phá 2 trang 43 SGK Toán 11 Chân trời sáng tạo tập 2
Dùng định nghĩa, tính đạo hàm của hàm số \(y = \sqrt x \) tại điểm \(x = {x_0}\) với \({x_0} > 0\).
Hướng dẫn giải chi tiết Hoạt động khám phá 2
Phương pháp giải:
Tính giới hạn \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
Lời giải chi tiết:
Với bất kì \({x_0} > 0\), ta có:
\(\begin{array}{*{20}{l}}
\begin{array}{l}
f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\\
= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt x - \sqrt {{x_0}} }}{{x - {x_0}}}\\
= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {\sqrt x - \sqrt {{x_0}} } \right)\left( {\sqrt x + \sqrt {{x_0}} } \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt x + \sqrt {{x_0}} } \right)}}
\end{array}\\
\begin{array}{l}
= \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{\left( {x - {x_0}} \right)\left( {\sqrt x + \sqrt {{x_0}} } \right)}}\\
= \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{\sqrt x + \sqrt {{x_0}} }}\\
= \frac{1}{{\sqrt {{x_0}} + \sqrt {{x_0}} }} = \frac{1}{{2\sqrt {{x_0}} }}
\end{array}
\end{array}\)
Vậy \(f'\left( x \right) = {\left( {\sqrt x } \right)^\prime } = \frac{1}{{2\sqrt x }}\) trên \(\left( {0; + \infty } \right)\).
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Hoạt động khám phá 1 trang 42 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Thực hành 1 trang 43 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Thực hành 2 trang 43 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Thực hành 3 trang 43 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 3 trang 44 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Thực hành 4 trang 44 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 4 trang 44 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 5 trang 45 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Thực hành 5 trang 44 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Thực hành 6 trang 46 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 6 trang 46 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Thực hành 7 trang 47 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Hoạt động khám phá 7 trang 47 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Thực hành 8 trang 48 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Vận dụng trang 48 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 1 trang 48 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 2 trang 49 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 3 trang 49 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 4 trang 49 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 5 trang 49 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 6 trang 49 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Giải Bài 7 trang 49 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST
Bài tập 1 trang 43 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 2 trang 43 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 3 trang 43 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 4 trang 43 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 5 trang 43 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 6 trang 43 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 7 trang 44 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST
Bài tập 8 trang 44 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST