YOMEDIA
NONE

Hoạt động khám phá 3 trang 44 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 3 trang 44 SGK Toán 11 Chân trời sáng tạo tập 2

Cho biết \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\). Dùng định nghĩa tính đạo hàm của hàm số \(y = \sin x\).

ATNETWORK

Hướng dẫn giải chi tiết Hoạt động khám phá 3

Phương pháp giải:

Tính giới hạn \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).

 

Lời giải chi tiết:

Với bất kì \({x_0} \in \mathbb{R}\), ta có:

\(f'\left( {{x_0}} \right) \)\(= \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} \)\(= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin x - \sin {x_0}}}{{x - {x_0}}}\)

Đặt \(x = {x_0} + \Delta x\). Ta có:

\(\begin{array}{*{20}{l}}
\begin{array}{l}
f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin \left( {{x_0} + \Delta x} \right) - \sin {x_0}}}{{\Delta x}}\\
 = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\cos \Delta x + \cos {x_0}\sin \Delta x - \sin {x_0}}}{{\Delta x}}
\end{array}\\
\begin{array}{l}
 = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\cos \Delta x - \sin {x_0}}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\cos {x_0}\sin \Delta x}}{{\Delta x}}\\
 = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\left( {\cos \Delta x - 1} \right)}}{{\Delta x}} + \mathop {\lim }\limits_{\Delta x \to 0} \cos {x_0}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin \Delta x}}{{\Delta x}}
\end{array}
\end{array}\)

Lại có:

\(\begin{array}{*{20}{l}}
\begin{array}{l}
\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\left( {\cos \Delta x - 1} \right)}}{{\Delta x}}\\
 = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\left( {\cos \Delta x - 1} \right)\left( {\cos \Delta x + 1} \right)}}{{\Delta x\left( {\cos \Delta x + 1} \right)}}\\
 = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\left( {{{\cos }^2}\Delta x - 1} \right)}}{{\Delta x\left( {\cos \Delta x + 1} \right)}}
\end{array}\\
\begin{array}{l}
 = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}\left( { - {{\sin }^2}\Delta x} \right)}}{{\Delta x\left( {\cos \Delta x + 1} \right)}}\\
 =  - \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin \Delta x}}{{\Delta x}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin {x_0}.\sin \Delta x}}{{\left( {\cos \Delta x + 1} \right)}}\\
 =  - 1.\frac{{\sin {x_0}.\sin 0}}{{\cos 0 + 1}} = 0
\end{array}\\
{\mathop {\lim }\limits_{\Delta x \to 0} \cos {x_0}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin \Delta x}}{{\Delta x}} = \cos {x_0}.1 = \cos {x_0}}
\end{array}\)

Vậy \(f'\left( {{x_0}} \right) = \cos {x_0}\)

Vậy \(f'\left( x \right) = \cos x\) trên \(\mathbb{R}\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Hoạt động khám phá 3 trang 44 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

Bài tập SGK khác

Hoạt động khám phá 2 trang 43 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 2 trang 43 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 3 trang 43 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 4 trang 44 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 4 trang 44 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 5 trang 45 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 5 trang 44 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 6 trang 46 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 6 trang 46 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 7 trang 47 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Hoạt động khám phá 7 trang 47 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Thực hành 8 trang 48 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Vận dụng trang 48 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 1 trang 48 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 2 trang 49 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 3 trang 49 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 4 trang 49 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 5 trang 49 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 6 trang 49 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Giải Bài 7 trang 49 SGK Toán 11 Chân trời sáng tạo tập 2 - CTST

Bài tập 1 trang 43 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 2 trang 43 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 3 trang 43 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 4 trang 43 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 5 trang 43 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 6 trang 43 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 7 trang 44 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

Bài tập 8 trang 44 SBT Toán 11 Tập 2 Chân trời sáng tạo - CTST

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON