ON
YOMEDIA
VIDEO

Bài tập 18 trang 143 SGK Toán 11 NC

Bài tập 18 trang 143 SGK Toán 11 NC

Tìm các giới hạn sau:

a)  \(\lim \left( {\sqrt {{n^2} + n + 1}  - n} \right)\)

Hướng dẫn: Nhân và chia biểu thức đã cho với \({\sqrt {{n^2} + n + 1}  + n}\)

b) \(\lim \frac{1}{{\sqrt {n + 2}  - \sqrt {n + 1} }}\)

Hướng dẫn: Nhân tử và mẫu của phân thức đã cho với \({\sqrt {n + 2}  + \sqrt {n + 1} }\)

c) \(\lim {\rm{ }}\left( {\sqrt {{n^2} + n + 2}  - \sqrt {n + 1} } \right)\)

d) \(\lim \frac{1}{{\sqrt {3n + 2}  - \sqrt {2n + 1} }}\)

e) \(\lim \left( {\sqrt {n + 1}  - \sqrt n } \right)n\)

f) \(\lim \frac{{\sqrt {{n^2} + 1}  - \sqrt {n + 1} }}{{3n + 2}}\)

VDO.AI

Hướng dẫn giải chi tiết

 
 

a)

\(\begin{array}{l}
\lim \left( {\sqrt {{n^2} + n + 1}  - n} \right) = \lim \frac{{\left( {{n^2} + n + 1} \right) - {n^2}}}{{\sqrt {{n^2} + n + 1}  + n}}\\
 = \lim \frac{{n + 1}}{{\sqrt {{n^2} + n + 1}  + n}} = \lim \frac{{n\left( {1 + \frac{1}{n}} \right)}}{{n\left( {\sqrt {1 + \frac{1}{n} + \frac{1}{{{n^2}}}}  + 1} \right)}}\\
 = \lim \frac{{1 + \frac{1}{n}}}{{\sqrt {1 + \frac{1}{n} + \frac{1}{{{n^2}}}}  + 1}} = \frac{1}{2}
\end{array}\)

b)

\(\begin{array}{l}
\lim \frac{1}{{\sqrt {n + 2}  - \sqrt {n + 1} }}\\
 = \lim \frac{{\sqrt {n + 2}  + \sqrt {n + 1} }}{{n + 2 - n - 1}}\\
 = \lim \left( {\sqrt {n + 2}  + \sqrt {n + 1} } \right) =  + \infty 
\end{array}\)

Câu c:

\(\begin{array}{*{20}{l}}
\begin{array}{l}
\lim \left( {\sqrt {{n^2} + n + 2}  - \sqrt {n + 1} } \right)\\
 = \lim n.\left( {\sqrt {1 + \frac{1}{n} + \frac{2}{{{n^2}}}}  - \sqrt {\frac{1}{n} + \frac{1}{{{n^2}}}} } \right) =  + \infty 
\end{array}
\end{array}\)

(vì \(\begin{array}{l}
\lim n =  + \infty ,\lim \left( {\sqrt {1 + \frac{1}{n} + \frac{2}{{{n^2}}}}  - \sqrt {\frac{1}{n} + \frac{1}{{{n^2}}}} } \right) = 1 > 0
\end{array}\))

d)

\(\begin{array}{*{20}{l}}
\begin{array}{l}
\lim \frac{1}{{\sqrt {3n + 2}  - \sqrt {2n + 1} }}\\
 = \lim \frac{{\sqrt {3n + 2}  + \sqrt {2n + 1} }}{{3n + 2 - 2n - 1}}
\end{array}\\
\begin{array}{l}
 = \lim \frac{{\sqrt {3n + 2}  + \sqrt {2n + 1} }}{{n + 1}}\\
 = \lim \frac{{n\left( {\sqrt {\frac{3}{n} + \frac{2}{{{n^2}}}}  + \sqrt {\frac{2}{n} + \frac{1}{{{n^2}}}} } \right)}}{{n\left( {1 + \frac{1}{n}} \right)}}
\end{array}\\
{ = \lim \frac{{\sqrt {\frac{3}{n} + \frac{2}{{{n^2}}}}  + \sqrt {\frac{2}{n} + \frac{1}{{{n^2}}}} }}{{1 + \frac{1}{n}}} = 0}
\end{array}\)

e)

\(\begin{array}{l}
\lim \left( {\sqrt {n + 1}  - \sqrt n } \right)n = \lim \sqrt n .\frac{{\sqrt n }}{{\sqrt {n + 1}  + \sqrt n }}\\
 = \lim \sqrt n .\frac{1}{{\sqrt {1 + \frac{1}{n}}  + 1}} =  + \infty 
\end{array}\)

(vì \(\lim \sqrt n  =  + \infty ,lim\frac{1}{{\sqrt {1 + \frac{1}{n}}  + 1}} = \frac{1}{2} > 0\))

f)

\(\begin{array}{*{20}{l}}
\begin{array}{l}
\lim \frac{{\sqrt {{n^2} + 1}  - \sqrt {n + 1} }}{{3n + 2}}\\
 = \lim \frac{{n\left( {\sqrt {1 + \frac{1}{{{n^2}}}}  - \sqrt {\frac{1}{n} + \frac{1}{{{n^2}}}} } \right)}}{{n\left( {3 + \frac{2}{n}} \right)}}
\end{array}\\
{ = \lim \frac{{\sqrt {1 + \frac{1}{{{n^2}}}}  - \sqrt {\frac{1}{n} + \frac{1}{{{n^2}}}} }}{{3 + \frac{2}{n}}} = \frac{1}{3}}
\end{array}\)

-- Mod Toán 11 HỌC247

 
Nếu bạn thấy hướng dẫn giải Bài tập 18 trang 143 SGK Toán 11 NC HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

 

YOMEDIA
1=>1