YOMEDIA
NONE

Giải bài 6 trang 86 SGK Toán 10 Cánh diều tập 2 - CD

Giải bài 6 trang 86 SGK Toán 10 Cánh diều tập 2

Cho ba điểm A(2;4), B(-1; 2) và C(3;-1). Viết phương trình đường thẳng đi qua B đồng thời cách đều A và C.

ATNETWORK

Hướng dẫn giải chi tiết

Phương pháp giải

Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta \) có phương trình \({\rm{a}}x + by + c = 0\left( {{a^2} + {b^2} > 0} \right)\) và điểm \(M\left( {{x_o};{y_0}} \right)\). Khoảng cách từ điểm M đến đường thẳng \(\Delta \), kí hiệu là \(d\left( {M,\Delta } \right)\) được tính bởi công thức: \(d\left( {M,\Delta } \right) = \frac{{\left| {{\rm{a}}{x_o} + b{y_o} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\) 

Hướng dẫn giải

Gọi \(\Delta \) là đường thẳng đi qua B và có vecto pháp tuyến là \(\overrightarrow n  = \left( {a;b} \right)\)

Vậy phương trình \(\Delta \) là: \(a\left( {x + 1} \right) + b\left( {y - 2} \right) = 0 \Leftrightarrow {\rm{a}}x + by + \left( {a - 2b} \right) = 0\)

Ta có: \(d\left( {A,\Delta } \right) = d\left( {C,\Delta } \right) \Leftrightarrow \frac{{\left| {3a + 2b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = \frac{{\left| {4a - 3b} \right|}}{{\sqrt {{a^2} + {b^2}} }} \Leftrightarrow \left[ \begin{array}{l}3a + 2b = 4a - 3b\\3a + 2b =  - 4a + 3b\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = 5b\left( 1 \right)\\7a = b\left( 2 \right)\end{array} \right.\)

Từ (1) ta có thể chọn được 1 vecto pháp tuyến là: \(\overrightarrow n  = \left( {5;1} \right)\). Vậy phương trình đường thẳng \(\Delta \)là: \(5x + y + 3 = 0\)

Từ (2) ta có thể chọn được 1 vecto pháp tuyến là: \(\overrightarrow n  = \left( {1;7} \right)\). Vậy phương trình đường thẳng \(\Delta \)là: \(x + 7y - 13 = 0\) 

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 6 trang 86 SGK Toán 10 Cánh diều tập 2 - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON