Giải bài 6.50 trang 25 SBT Toán 10 Kết nối tri thức tập 2
Bất phương trình \(m{x^2} - (2m - 1)x + m + 1 < 0\) (1) vô nghiệm khi và chỉ khi
A. \(m \le \frac{1}{8}\)
B. \(m > \frac{1}{8}\)
C. \(m < \frac{1}{8}\)
D. \(m \ge \frac{1}{8}\)
Hướng dẫn giải chi tiết Bài 6.50
Phương pháp giải
Bước 1: Xét m = 0, BPT (1) trở thành BPT bậc nhất ẩn x luôn có nghiệm => Loại điều kiện m = 0
Bước 2: Xét m ≠ 0, \(m{x^2} - (2m - 1)x + m + 1 < 0\) vô nghiệm \( \Leftrightarrow \)\(m{x^2} - (2m - 1)x + m + 1 \ge 0,\forall x \in \mathbb{R}\)
Bước 3: Kết luận
Lời giải chi tiết
+) Với m = 0, BPT (1) có dạng \(x + 1 < 0\) \( \Leftrightarrow x < - 1\)
Suy ra BPT (1) có tập nghiệm \(\left( { - \infty ; - 1} \right)\) nên m = 0 không thỏa mãn
+) Với m ≠ 0, BPT (1) là BPT bậc hai ẩn x
Khi đó BPT (1) vô nghiệm khi và chỉ khi \(m{x^2} - (2m - 1)x + m + 1 \ge 0,\forall x \in \mathbb{R}\)
\( \Leftrightarrow m > 0\) và ∆ ≤ 0
Xét ∆ ≤ 0 \( \Leftrightarrow {(2m - 1)^2} - 4m(m + 1) \le 0 \Leftrightarrow - 8m + 1 \le 0 \Leftrightarrow m \ge \frac{1}{8}\)
Vậy với \(m \ge \frac{1}{8}\) thì BPT (1) vô nghiệm
\( \Rightarrow \) Chọn D
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 6.48 trang 25 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.49 trang 25 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.51 trang 25 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.52 trang 25 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.53 trang 25 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.54 trang 25 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.55 trang 26 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.56 trang 26 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.57 trang 26 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.58 trang 26 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.59 trang 26 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.60 trang 26 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.61 trang 27 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.62 trang 27 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.63 trang 27 SBT Toán 10 Kết nối tri thức tập 2 - KNTT