Giải bài 6.59 trang 26 SBT Toán 10 Kết nối tri thức tập 2
Vẽ đồ thị mỗi hàm số sau, từ đó suy ra tập nghiệm của bất phương trình tương ứng
a) \(y = {x^2} - 3x + 2\) và bất phương trình \({x^2} - 3x + 2 \ge 0\)
b) \(y = {x^2} - x - 6\) và bất phương trình \({x^2} - x - 6 < 0\)
Hướng dẫn giải chi tiết Bài 6.59
Phương pháp giải
+ Để vẽ đường parabol y = ax2 + bx + c ta tiến hành theo các bước sau:
1. Xác định toạ độ đính \(I\left( { - \frac{b}{{2{\rm{a}}}}; - \frac{\Delta }{{4{\rm{a}}}}} \right)\);
2. Vẽ trục đối xứng \({x = - \frac{b}{{2{\rm{a}}}}}\);
3. Xác định toạ độ các giao điểm của parabol với trục tung, trục hoành (nếu có) và một vài điểm đặc biệt trên parabol;
4. Vẽ parabol.
Lời giải chi tiết
a)
Đồ thị hàm số y = x2 – 3x + 2 là parabol có bề lõm hướng lên, đỉnh là (1,5; –0,25), đi qua hai điểm (1; 0) và (2; 0). Đồ thị hàm số như hình vẽ:
Việc giải bất phương trình x2 – 3x + 2 ≥ 0 ứng với việc tìm các khoảng mà phần đồ thị tương ứng của nó nằm phía trên trục hoành. Từ đồ thị trên ta thấy khi x ≤ 1 và x ≥ 2 thì đồ thị hàm số y = x2 – 3x + 2 nằm phía trên trục hoành.
Vậy tập nghiệm của bất phương trình là (–∞; 1]∪[2; +∞).
b)
Đồ thị hàm số y = x2 – x – 6 là parabol có bề lõm hướng lên, đỉnh là: (0,5; –6,25), đi qua hai điểm (–2; 0), (3; 0) được vẽ trong hình sau:
Việc giải bất phương trình y = x2 – x – 6 < 0 ứng với việc tìm các khoảng mà phần đồ thị tương ứng của nó nằm phía dưới trục hoành. Từ đồ thị trên ta thấy khi –2 < x < 3 thì đồ thị hàm số y = x2 – x – 6 nằm phía dưới trục hoành.
Vậy tập nghiệm của bất phương trình là (–2; 3).
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 6.57 trang 26 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.58 trang 26 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.60 trang 26 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.61 trang 27 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.62 trang 27 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.63 trang 27 SBT Toán 10 Kết nối tri thức tập 2 - KNTT