Giải bài 6.56 trang 26 SBT Toán 10 Kết nối tri thức tập 2
Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tìm tập xác định , tập giá trị, khoảng đồng biến và khoảng nghịch biến của chúng.
a) \(y = |x - 1| + |x + 1|\)
b) \(y = \left\{ \begin{array}{l}x + 1,x < - 1\\{x^2} - 1,x \ge - 1\end{array} \right.\)
Hướng dẫn giải chi tiết Bài 6.56
Phương pháp giải
Lời giải chi tiết
a) Ta có bảng xét dấu sau:
Từ bảng xét dấu suy ra:
- Với x < -1 thì hàm số có dạng \(y = 1 - x - x - 1 \Leftrightarrow y = - 2x\)
- Với -1 ≤ x < 1 thì hàm số có dạng \(y = 1 - x + x + 1 \Leftrightarrow y = 2\)
- Với x ≥ 1 thì hàm số có dạng \(y = x - 1 + x + 1 \Leftrightarrow y = 2x\)
Khi đó: \(y = |x - 1| + |x + 1| = \left\{ \begin{array}{l} - 2x,x < - 1\\2, - 1 \le x < 1\\2x,x \ge 1\end{array} \right.\)
Ta có đồ thị:
Hàm số \(y = |x - 1| + |x + 1|\) có:
+ Tập xác định là \(\mathbb{R}\)
+ Tập giá trị là \({\rm{[}}2; + \infty )\)
+ Hàm số nghịch biến trên \(( - \infty ; - 1)\), không đổi (hàm hằng) trên (-1 ; 1) và đồng biến trên \((1; + \infty )\)
b) \(y = \left\{ \begin{array}{l}x + 1,x < - 1\\{x^2} - 1,x \ge - 1\end{array} \right.\)
Ta có đồ thị:
Hàm số \(y = \left\{ \begin{array}{l}x + 1,x < - 1\\{x^2} - 1,x \ge - 1\end{array} \right.\) có:
+ Tập xác định là \(\mathbb{R}\)
+ Tập giá trị là \(\mathbb{R}\)
+ Hàm số đồng biến trên \(( - \infty ; - 1)\) và \((0; + \infty )\); nghịch biến trên (-1 ; 0)
-- Mod Toán 10 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Giải bài 6.54 trang 25 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.55 trang 26 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.57 trang 26 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.58 trang 26 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.59 trang 26 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.60 trang 26 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.61 trang 27 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.62 trang 27 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 6.63 trang 27 SBT Toán 10 Kết nối tri thức tập 2 - KNTT