YOMEDIA
NONE

Giải bài 3.10 trang 43 SGK Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 3.10 trang 43 SGK Toán 10 Kết nối tri thức tập 1

Từ bãi biển Vũng Chùa, Quảng Bình, ta có thể ngắm được Đảo Yến. Hãy đề xuất một các xác định bề rộng của hòn đảo (theo chiều ta ngắm được).

ATNETWORK

Hướng dẫn giải chi tiết

Phương pháp giải

Bước 1: Đánh dấu vị trí quan sát tại điểm A, chiều rộng của hòn đảo kí hiệu là đoạn BC.

Bước 2: Quan sát để xác định các góc \(\widehat {BAC} = \alpha ,\;\widehat {HAC} = \beta \).

Bước 3: Giải tam giác AMC, tính AC.

Bước 4: Áp dụng định lí sin cho tam giác ABC để tính cạnh BC.

Hướng dẫn giải

Bước 1:

Đánh dấu vị trí quan sát tại điểm A, chiều rộng của hòn đảo kí hiệu là đoạn BC.

Gọi H là hình chiếu của A trên BC.

Trên tia đối của tia AH, lấy điểm M, ghi lại khoảng cách AM = a.

 

Bước 2:

Tại A, quan sát để xác định các góc \(\widehat {BAC} = \alpha ,\;\widehat {HAC} = \beta \).

Tiếp tục quan sát tại M, xác định góc \(\widehat {HMC} = \gamma \).

Bước 3: Giải tam giác AMC, tính AC.

AM = a, \(\widehat {AMC} = \widehat {HMC} = \gamma \) và \(\widehat {MAC} = {180^o} - \beta \)

\( \Rightarrow \widehat {ACM} = {180^o} - \gamma  - \left( {{{180}^o} - \beta } \right) = \beta  - \gamma \)

Áp dụng định định lí sin trong tam giác AMC ta có:

\(\frac{{AC}}{{\sin AMC}} = \frac{{AM}}{{\sin ACM}} \Rightarrow AC = \sin \gamma .\frac{a}{{\sin \left( {\beta  - \gamma } \right)}}\)

Bước 4:

 \(\widehat {ABC} = {90^o} - \widehat {HAB} = {90^o} - (\alpha  - \beta )\)  

Áp dụng định lí sin cho tam giác ABC ta có:

\(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} \Rightarrow BC = \sin \alpha .\frac{{\sin \gamma .\frac{a}{{\sin \left( {\beta  - \gamma } \right)}}}}{{\sin \left( {{{90}^o} - (\alpha  - \beta )} \right)}}.\).

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 3.10 trang 43 SGK Toán 10 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
NONE
ON