Giải bài 3.12 trang 39 SBT Toán 10 Kết nối tri thức tập 1
Một cây cổ thụ mạc thẳng đứng bên lề một con dốc có độ dốc \({10^ \circ }\) so với phương nằm ngang. Từ một điểm dưới chân dốc, cách gốc cây 31 m người ta nhìn đỉnh ngọn cây dưới một góc \({40^ \circ }\) so với phương nằm ngang. Hãy tính chiều cao của cây.
Hướng dẫn giải chi tiết Bài 3.12
Phương pháp giải
- Tính \(\widehat {BAC}\) và \(\widehat {ACB}\)
- Áp dụng định lý sin, tính cạnh \(BC:\frac{{BC}}{{\sin BAC}} = \frac{{AB}}{{\sin ACB}}\)
Lời giải chi tiết
Giả sử con dốc là AB, gốc cây đặt tại B, chiều cao cây cổ thụ là đoạn CB.
Khi đó ta có: \( \widehat {BAD} = {10^ \circ },\, \widehat {CAD} = {40^ \circ }\) và \(AB=31m\)
Xét \(\Delta ADC\) vuông tại \(D\) có: \(\widehat {ACB} = {90^ \circ } - \widehat {DAC} = {90^ \circ } - {40^ \circ } = {50^ \circ }.\)
Ta có: \(\widehat {CAB} = \widehat {DAC} - \widehat {DAB} = {40^ \circ } - {10^ \circ } = {30^ \circ }.\)
Chiều cao của cây là:
Áp dụng định lý sin, ta có:
\(\begin{array}{l}\frac{{BC}}{{\sin BAC}} = \frac{{AB}}{{\sin ACB}}\,\, \Rightarrow \,\,BC = \frac{{AB.\sin BAC}}{{\sin ACB}}\\ \Rightarrow \,\,BC = \frac{{31.\sin {{30}^ \circ }}}{{\sin {{50}^ \circ }}} \approx 20,23\,\,m\end{array}\)
-- Mod Toán 10 HỌC247
-
Thực hiện phép tính: \(\tan(α - \dfrac{\pi }{4}),\) biết \(\cosα = -\dfrac{1}{3}\) và \( \dfrac{\pi }{2} < α < π.\)
bởi Nguyễn Vân 29/08/2022
Theo dõi (0) 1 Trả lời
Bài tập SGK khác
Giải bài 3.10 trang 39 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.11 trang 39 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.13 trang 39 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.14 trang 39 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.15 trang 39 SBT Toán 10 Kết nối tri thức tập 1 - KNTT
Giải bài 3.16 trang 39 SBT Toán 10 Kết nối tri thức tập 1 - KNTT