YOMEDIA
NONE

Giải bài 3.13 trang 39 SBT Toán 10 Kết nối tri thức tập 1 - KNTT

Giải bài 3.13 trang 39 SBT Toán 10 Kết nối tri thức tập 1

Cho tam giác \(ABC.\) Chứng minh rằng:

a) \(\cot A + \cot B + \cot C = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}}.\)

b) \(m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right).\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 3.13

Phương pháp giải

a) sử dụng định lý sin và công thức tính diện tích tam giác.

b) sử dụng tính chất đường trung tuyến của tam giác.

Lời giải chi tiết

a) \(\cot A + \cot B + \cot C = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}}.\)

\(\begin{array}{l}VT = \frac{{\cos A}}{{\sin A}} + \frac{{\cos B}}{{\sin B}} + \frac{{\cos C}}{{\sin C}} = \frac{{\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}}{{\frac{{2S}}{{bc}}}} + \frac{{\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}}{{\frac{{2S}}{{ac}}}} + \frac{{\frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}}}{{\frac{{2S}}{{ab}}}}\\ = \frac{{{b^2} + {c^2} - {a^2}}}{{4S}} + \frac{{{a^2} + {c^2} - {b^2}}}{{4S}} + \frac{{{a^2} + {b^2} - {c^2}}}{{4S}}\\ = \frac{{{a^2} + {b^2} + {c^2}}}{{4S}} = VP\,\,\left( {dpcm} \right)\end{array}\)

b) \(m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right).\)

\(\begin{array}{l}VT = \left( {\frac{{{b^2} + {c^2}}}{2} - \frac{{{a^2}}}{4}} \right) + \left( {\frac{{{a^2} + {c^2}}}{2} - \frac{{{b^2}}}{4}} \right) + \left( {\frac{{{a^2} + {b^2}}}{2} - \frac{{{c^2}}}{4}} \right)\\ = \frac{{2\left( {{a^2} + {b^2} + {c^2}} \right)}}{2} - \frac{{{a^2} + {b^2} + {c^2}}}{4}\\ = \frac{3}{4}\left( {{a^2} + {b^2} + {c^2}} \right) = VP\,\,\left( {dpcm} \right).\end{array}\) 

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 3.13 trang 39 SBT Toán 10 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
NONE
ON