Hướng dẫn Giải bài tập Toán 10 Kết nối tri thức Chương 9 Bài 27 Thực hành tính xác suất theo định nghĩa cổ điển giúp các em học sinh nắm vững phương pháp giải bài tập và ôn luyện tốt kiến thức.
-
Hoạt động 1 trang 83 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Theo định nghĩa cổ điển của xác suất để tính xác suất của biến cố F: "Bạn An trúng giải độc đắc" và biến cố G: "Bạn An trúng giải nhất" ta cần xác định \(n(\Omega ), n(F)\) và n(G). Liệu có thể tính \(n(\Omega ), n(F)\) và n(G) bằng cách liệt kê ra hết các phần tử của \(\Omega\), F và G rồi kiểm đếm được không.
-
Luyện tập 1 trang 84 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Môt tổ trong lớp 10B có 12 học sinh, trong đó có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 6 học sinh trong tổ để kiếm tra vở bài tập Toán. Tính xác suất để trong 6 học sinh được chọn số học sinh nữ bằng số học sinh nam.
-
Hoạt động 2 trang 84 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Trong trò chơi "Vòng quay may mắn", người chơi sẽ quay hai bánh xe. Mũi tên ở bánh xe thứ nhất có thể dừng ở một trong hai vị trí: Loại xe 50 cc và Loại xe 110 cc. Mũi tên ở bánh xe thứ hai có thể dừng ở một trong bốn vị trí: màu đen, màu trắng, màu đỏ và màu xanh. Vị trí của mũi tên trên hai bánh xe sẽ xác định người chơi nhận được loại xe nào, màu gì.
Phép thử T là quay hai bánh xe. Hãy vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.
-
Luyện tập 2 trang 85 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Trở lạ trò chơi "Vòng quay may mắn" ở HĐ2. Tính xác suất để người chơi nhận được loại xe 110 cc có màu trắng hoặc màu xanh.
-
Luyện tập 3 trang 85 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Trong một cuộc tổng điều tra dân số, điều tra viên chọn ngẫu nhiên một gia đình có ba người con và quan tâm giới tính của ba người con này.
a) Vẽ sơ đồ hình ây để mô tả các phần tử của không gian mẫu.
b) Giả thiết rằng khả năng sinh con trai và khả năng sinh con gái là như nhau. Tính xác suất để gia đình đó có một con trai và hai con gái.
-
Hoạt động 3 trang 85 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Cho E là biến cố và \(\Omega \) là không gian mẫu. Tính \(n(\overline{E})\) theo \(n(\Omega )\) và n(E).
-
Luyện tập 4 trang 86 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Có ba hộp A, B, C. Hộp A có chứa ba thẻ mang số 1, số 2, số 3. Hộp B chứa hai thẻ mang số 2 và số 3. Hộp C chứa hai thẻ mang số 1 và số 2. Từ mỗi hộp ta rút ra ngẫu nhiên một thẻ.
a) Vẽ sơ đồ cây để mô tả các phần tử của không gian mẫu.
b) Gọi M là biến cố: "Trong ba thẻ rút ra có ít nhất một thẻ số 1". Biến cố \(\overline{M}\) là tập con nào của không gian mẫu?
c) Tính P(M) và P(\(\overline{M}\)).
-
Vận dụng trang 86 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài toán trong tình huống mở đầu.
-
Giải bài 9.6 trang 86 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Chọn ngẫu nhiên một gia đình có ba con và quan sát giới tính của ba người con này. Tính xác suất của các biến cố sau:
a) A: "Con đầu là gái";
b) B: "Có it nhất một người con trai".
-
Giải bài 9.7 trang 86 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Một hộp đựng các tấm thẻ đánh số 10; 11; ....; 20. Rút ngẫu nhiên từ hộp hai tấm thẻ. Tính xác suất của các biến cố sau:
a) C: "Cả hai thẻ rút được đều mang số lẻ";
b) D: "Cả hai thẻ rút được đều mang số chẵn".
-
Giải bài 9.8 trang 86 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Một chiếc hộp đựng 6 viên bi trắng, 4 viên bi đỏ và 2 viên bi đen. Chọn ngẫu nhiên ra 6 viên bi. Tính xác suất để trong 6 viên bi đó có 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen.
-
Giải bài 9.9 trang 86 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Gieo liên tiếp một con xúc xắc và một đồng xu.
a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.
b) Tính xác suất của các biến cố sau:
F: "Đồng xu xuất hiện mặt ngửa";
G: "Đồng xu xuất hiện mặt sấp hoặc số chấm xuất hiện trên con xúc xắc là 5".
-
Giải bài 9.10 trang 87 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Trên một phố có hai quán ăn X, Y. Ba bạn Sơn, Hải, Văn mỗi người chọn ngẫu nhiên một quán ăn.
a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.
b) Tính xác suất của biến cố "Hai bạn vào quán X, bạn còn lại vào quán Y".
-
Giải bài 9.11 trang 87 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Gieo lần lượt hai con xúc xắc cân đối. Tính xác suất để ít nhất một con xúc xắc xuất hiện mặt 6 chấm.
-
Giải bài 9.12 trang 87 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Màu hạt của đậu Hà Lan có hai kiểu hình là màu vàng và màu xanh tương ứng với hai loại gen là gen trội A và gen lặn a. Hình dạng hạt của đậu Hà Lan có hai kiểu hình là hạt trơn và hạt nhăn tương ứng với hai loại gen là gen trội B và gen lặn b. Biết rằng, cây con lấy ngẫu nhiên một gen từ cây bố và một gen từ cây mẹ.
Phép thử là cho lai hai loại đậu Hà Lan, trong đó cả cây bố và cây mẹ đều có kiểu gen là (Aa,Bb) và kiểu hình là hạt màu vàng và trơn. Giả sử các kết quả có thể là đồng khả năng. Tính xác suất để cây con cũng có kiểu hình là hạt màu vàng và trơn.
-
Giải bài 9.7 trang 66 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Tại một quán ăn, lúc đầu có 50 khách trong đó có 2x đàn ông và y phụ nữ. Sau một tiếng, y – 6 đàn ông ra về và 2x – 5 khách mới đến là nữ. Chọn ngẫu nhiên một khách. Biết rằng xác suất để chọn được một khách nữ là \(\frac{9}{{13}}\). Tìm x và y.
-
Giải bài 9.8 trang 66 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Một lớp có 40 học sinh trong đó có 16 nam. Trong các em nam có 3 em thuận tay trái. Trong các em nữ có 2 em thuận tay trái. Chọn ngẫu nhiên hai em. Tính xác suất để hai em chọn được có một em nữ không thuận tay trái và một em nam thuận tay trái.
-
Giải bài 9.9 trang 66 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Có ba chiếc hộp trong đó hộp I có một viên bi đỏ, một viên bi xanh, một viên
bi vàng; hộp II có một viên bi xanh, một viên bi vàng; hộp III có một viên bi đỏ và một viên bi xanh. Tất cả các viên bi đều có cùng kích thước. Từ mỗi hộp rút ngẫu nhiên một viên bi.
a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.
b) Tính xác suất để trong ba viên bi rút ra có ít nhất một viên bi đỏ bằng cách tính gián tiếp thông qua tính xác suất của biến cố đối.
-
Giải bài 9.10 trang 66 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Có ba hộp đựng thẻ. Hộp I chứa các tấm thẻ đánh số {1; 2; 3}. Hộp II chứa các tấm thẻ đánh số {2; 4; 6; 8}. Hộp III chứa các tấm thẻ đánh số {1; 3; 5; 7; 9; 11}. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ rồi cộng ba số trên ba tấm thẻ với nhau. Tính xác suất để kết quả là một số lẻ.
-
Giải bài 9.11 trang 66 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Trên một dãy phố có 3 quán ăn A, B, C. Hai bạn Văn và Hải mỗi người chọn ngẫu nhiên một quán để ăn trưa.
a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.
b) Tính xác suất của các biến cố sau:
E: “Hai người cùng vào một quán".
F: “Cả hai không chọn quán C.
-
Giải bài 9.12 trang 66 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Trên một phố có hai quán ăn A, B. Bốn bạn Sơn, Hải, Văn, Đạo mỗi người chọn ngẫu nhiên một quán ăn.
a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.
b) Tính xác suất để:
• Tất cả đều vào một quán;
• Mỗi quán có đúng 2 bạn vào;
• Quán A có 3 bạn vào, quán B có 1 bạn vào
• Một quán có 3 bạn vào, quán kia có 1 bạn vào.