ON
YOMEDIA
VIDEO

Bài tập 15 trang 17 SGK Hình học 10 NC

Bài tập 15 trang 17 SGK Hình học 10 NC

Chứng minh các mệnh đề sau đây:

a) Nếu \(\overrightarrow a  + \overrightarrow b  = \overrightarrow c \) thì 

\(\overrightarrow a  = \overrightarrow c  - \overrightarrow b ,\overrightarrow b  = \overrightarrow c  - \overrightarrow a \)

b) \(\overrightarrow a  - \left( {\overrightarrow b  + \overrightarrow c } \right) = \overrightarrow a  - \overrightarrow b  - \overrightarrow c \)

c) \(\overrightarrow a  - \left( {\overrightarrow b  - \overrightarrow c } \right) = \overrightarrow a  - \overrightarrow b  + \overrightarrow c \)

YOMEDIA

Hướng dẫn giải chi tiết

 
 

a) Cộng hai vế cho vectơ đối của vectơ \(\overrightarrow b\) ta có

\(\overrightarrow a  + \overrightarrow b  + \left( { - \overrightarrow b } \right) = \overrightarrow c  + \left( { - \overrightarrow b } \right) \)

\(\Rightarrow \overrightarrow a  = \overrightarrow c  - \overrightarrow b \)

Cộng hai vế cho vectơ đối của vectơ \(\overrightarrow a\) ta có

\(\overrightarrow a  + \overrightarrow b  + \left( { - \overrightarrow a } \right) = \overrightarrow c  + \left( { - \overrightarrow a } \right) \)

\(\Rightarrow \overrightarrow b  = \overrightarrow c  - \overrightarrow a \)

b) Ta có 

\(\overrightarrow a  - \left( {\overrightarrow b  + \overrightarrow c } \right) + \left( {\overrightarrow b  + \overrightarrow c } \right) = \overrightarrow a \)

Áp dụng câu a) ta có 

\(\overrightarrow a  - \left( {\overrightarrow b  + \overrightarrow c } \right) = \overrightarrow a  - \overrightarrow b  - \overrightarrow c \)

c) Áp dụng câu a) ta có 

\(\begin{array}{l}
\vec a - \left( {\vec b - \vec c} \right) = \vec a - \left[ {\vec b + \left( { - \vec c} \right)} \right]\\
 = \vec a - \vec b - \left( { - \vec c} \right) = \vec a - \vec b + \vec c
\end{array}\)

-- Mod Toán 10 HỌC247

 
Nếu bạn thấy hướng dẫn giải Bài tập 15 trang 17 SGK Hình học 10 NC HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

 

YOMEDIA
1=>1