ADMICRO
VIDEO

Bài tập 11 trang 191 SGK Toán 10 NC

Bài tập 11 trang 191 SGK Toán 10 NC

Chứng minh rằng hai tia Ou và Ov vuông góc với nhau khi và chỉ khi góc lượng giác (Ou; Ov) có số đo là \(\left( {2k + 1} \right).\frac{\pi }{2},k \in Z\)

ADSENSE

Hướng dẫn giải chi tiết

Ta có:

\(\begin{array}{*{20}{l}}
\begin{array}{l}
Ou \bot Ov\\
 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{sd\left( {Ou,Ov} \right) = \frac{\pi }{2} + k2\pi \left( {k \in Z} \right)}\\
\begin{array}{l}
sd\left( {Ou,Ov} \right) =  - \frac{\pi }{2} + l2\pi \left( {l \in Z} \right)\\
 = \frac{\pi }{2} + \left( {2l - 1} \right)\pi 
\end{array}
\end{array}} \right.
\end{array}\\
\begin{array}{l}
 \Leftrightarrow sd\left( {Ou,Ov} \right) = \frac{\pi }{2} + m\pi \\
 = \frac{\pi }{2}\left( {1 + 2m} \right)\left( {m \in Z} \right)
\end{array}
\end{array}\)

-- Mod Toán 10 HỌC247

 
Nếu bạn thấy hướng dẫn giải Bài tập 11 trang 191 SGK Toán 10 NC HAY thì click chia sẻ 
YOMEDIA
ADMICRO

 

YOMEDIA
OFF