Câu hỏi trắc nghiệm (10 câu):
-
Câu 1: Mã câu hỏi: 376
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Biết rằng \(f\left( x \right)\) là một trong bốn hàm số được đưa ra trong các phương án A, B, C, D dưới đây. Tìm \(f\left( x \right)\).
- A. \(f\left( x \right) = {e^x}\)
- B. \(f\left( x \right) = {x^{\frac{e}{\pi }}}\)
- C. \(f\left( x \right) = \ln x\)
- D. \(f\left( x \right) = {\left( {\frac{3}{\pi }} \right)^x}\)
-
Câu 2: Mã câu hỏi: 377
Cho các hàm số \(y = {\log _2}x;y = {\left( {\frac{e}{\pi }} \right)^x};\) \(y = \log {\rm{x}};y = {\left( {\frac{{\sqrt 3 }}{2}} \right)^x}.\) Trong các hàm số trên, có bao nhiêu hàm số nghịch biến trên tập xác định của nó?
- A. 2
- B. 3
- C. 1
- D. 4
-
Câu 3: Mã câu hỏi: 378
Kết quả tính đạo hàm nào sau đây sai?
- A. \({\left( {{{\log }_3}x} \right)'} = \frac{1}{{x\ln 3}}.\)
- B. \({\left( {{2^x}} \right)'} = {2^x}\ln 2.\)
- C. \({\left( {\ln x} \right)'} = \frac{1}{x}.\)
- D. \({\left( {{e^{5x}}} \right)'} = {e^{5x}}.\)
-
Câu 4: Mã câu hỏi: 379
Tính đạo hàm của hàm số \(y = \frac{{x + 3}}{{{9^x}}}\)
- A. \(y' = \frac{{1 - 2\left( {x + 3} \right)\ln 3}}{{{3^{2x}}}}\)
- B. \(y' = \frac{{1 + 2\left( {x + 3} \right)\ln 3}}{{{3^{2x}}}}.\)
- C. \(y' = \frac{{1 - 2\left( {x + 3} \right)\ln 3}}{{{3^{{x^2}}}}}.\)
- D. \(y' = \frac{{1 + 2\left( {x + 3} \right)\ln 3}}{{{3^{{x^2}}}}}\)
-
Câu 5: Mã câu hỏi: 380
Tìm tập xác định \(D\) của hàm số \(y = {\log _3}\left( {{x^2} + 3x + 2} \right)\).
- A. \(D = \left[ { - 2, - 1} \right].\)
- B. \(D = \left( { - \infty , - 2} \right) \cup \left( { - 1, + \infty } \right)\).
- C. \(D = \left( { - 2, - 1} \right)\).
- D. \(D = \left( { - \infty , - 2} \right] \cup \left[ { - 1, + \infty } \right)\).
-
Câu 6: Mã câu hỏi: 6134
Tìm đạo hàm của hàm số \(y = {\log _3}\left( {2 + {3^x}} \right).\)
- A. \(y = \frac{{{3^x}\ln 3}}{{2 + {3^x}}}.\)
- B. \(y = \frac{{{3^x}}}{{\left( {2 + {3^x}} \right)\ln 3}}.\)
- C. \(y = \frac{{{3^x}}}{{2 + {3^x}}}.\)
- D. \(y = \frac{1}{{\left( {2 + {3^x}} \right)\ln 3}}.\)
-
Câu 7: Mã câu hỏi: 6135
Tính đạo hàm của hàm số \(y = \ln \frac{{x - 1}}{{x + 2}}.\)
- A. \(y' = \frac{{ - 3}}{{\left( {x - 1} \right)\left( {x + 2} \right)}}\)
- B. \(y' = \frac{3}{{\left( {x - 1} \right){{\left( {x + 2} \right)}^2}}}\)
- C. \(y' = \frac{3}{{\left( {x - 1} \right)\left( {x + 2} \right)}}\)
- D. \(y' = \frac{{ - 3}}{{\left( {x - 1} \right){{\left( {x + 2} \right)}^2}}}\)
-
Câu 8: Mã câu hỏi: 6136
Cho hàm số \(y = {\log _{\frac{1}{3}}}x\). Khẳng định nào sau đây sai?
- A. Hàm số có tập xác định là \(D =\mathbb{R} \backslash \left\{ 0 \right\}\)
- B. \(y' = - \frac{1}{{x\ln 5}}.\)
- C. Hàm số nghịch biến trên từng khoảng xác định.
- D. Đồ thị hàm số nhận tiệm cận đứng là trục Oy.
-
Câu 9: Mã câu hỏi: 45580
Tìm miền xác định của hàm số y = log5(x - 2x2)
- A. D = (0; 2)
- B. D = (-∞; 0) ∪ (2; +∞)
- C. D = (0; 1/2)
- D. D = (-∞; 0) ∪ (1/2; +∞)
-
Câu 10: Mã câu hỏi: 45582
Tìm đạo hàm của hàm số y = x.23x
- A. y' = 23x(1 + 3xln2)
- B. y' = 23x(1 + 3ln3)
- C. y' = 23x(1 + xln2)
- D. y' = 23x(1 + xln3)