YOMEDIA
NONE

Tìm Min của B=5bc/a^2b+a^2c + 5ac/b^2a + b^2c + 5ab/c^2b+c^2a

Cho a,b,c là các số dương có tích bằng 1. Tìm Min của :

\(B=\dfrac{5bc}{a^2b+a^2c}+\dfrac{5ac}{b^2a+b^2c}+\dfrac{5ab}{c^2b+c^2a}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Áp dụng BĐT Cauchy-Schwarz ta có:

    \(B=\frac{5bc}{a^2b+a^2c}+\frac{5ac}{b^2a+b^2c}+\frac{5ab}{c^2b+c^2a}\)

    \(B=5\left(\frac{\frac{1}{a^2}}{\frac{1}{c}+\frac{1}{b}}+\frac{\frac{1}{b^2}}{\frac{1}{c}+\frac{1}{a}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\right)\)\(\geq 5\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{c}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{a}+\frac{1}{b}}\)

    hay \(B\geq \frac{5}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

    Áp dụng BĐT AM-GM:

    \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq 3\sqrt[3]{\frac{1}{abc}}=3\) do \(abc=1\)

    Suy ra \(B\geq \frac{15}{2}\Leftrightarrow B_{\min}=\frac{15}{2}\)

    Dấu bằng xảy ra khi \(a=b=c=1\)

      bởi Trịnh Vy 16/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON