YOMEDIA
NONE

Tìm m để pt có 2 no phân biệt thỏa căn(x_1+4)+căn(x_2+4)=5

cho phương trình \(^{x^2-5\left(m+1\right)x+25m=0}\)

Tìm m để pt có 2 no phân biệt thỏa \(\sqrt{x_1+4}+\sqrt{x_2+4}=5\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có : \(\Delta=\left[5\left(m+1\right)\right]^2-4.25m=25m^2+50m+25-100m=25m^2-50m+25=25\left(m-1\right)^2\ge0\)

    Nên phương trình luôn có 2 nghiệm phân biệt theo \(x_1\)\(x_2\)

    Mặt khác :

    \(\sqrt{x_1+4}+\sqrt{x_2+4}=5\)

    \(\Leftrightarrow\left(\sqrt{x_1+4}+\sqrt{x_2+4}\right)^2=25\)

    \(\Leftrightarrow x_1+4+2\sqrt{\left(x_1+4\right)\left(x_2+4\right)}+x_2+4=25\)

    \(\Leftrightarrow\left(x_1+x_2\right)+2\sqrt{x_1x_2+4\left(x_1+x_2\right)+16}=17\) (1)

    Theo định lý vi - et ta lại có :

    \(\left\{{}\begin{matrix}x_1+x_2=5m+5\\x_1x_2=25m\end{matrix}\right.\)

    Thay vào phương trình (1) ta được :

    \(5m+5+2\sqrt{25m+4\left(5m+5\right)+16}=17\)

    \(\Leftrightarrow2\sqrt{25m+20m+20+16}=12-5m\)

    \(\Leftrightarrow\sqrt{45m+36}=\dfrac{12-5m}{2}\)

    \(\Leftrightarrow45m+36=\dfrac{25m^2-120m+144}{4}\)

    \(\Leftrightarrow180m+144=25m^2-120m+144\)

    \(\Leftrightarrow180m+144-25m^2+120m-144=0\)

    \(\Leftrightarrow-25m^2+300=0\)

    \(\Leftrightarrow-25\left(m^2-12\right)=0\)

    \(\Leftrightarrow m^2-12=0\)

    \(\Leftrightarrow\left(m+\sqrt{12}\right)\left(m-\sqrt{12}\right)=0\)

    \(\Leftrightarrow\left[{}\begin{matrix}m+\sqrt{12}=0\\m-\sqrt{12}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-\sqrt{12}\\m=\sqrt{12}\end{matrix}\right.\)

      bởi Nguyễn Văn Đồng 14/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON