ON
YOMEDIA
VIDEO

Tìm GTLN của L=12−x−cănx/căn(x+4)

Cho:L=\(\dfrac{12-x-\sqrt{x}}{\sqrt{x+4}}\) (x\(\ge\)2;x\(\ne\)3)

a) Tìm GTLN

b) Tìm x sao cho cho L=2x


Theo dõi Vi phạm
YOMEDIA

Trả lời (1)

 
 
 
  • sửa đề: \(L=\dfrac{12-x-\sqrt{x}}{\sqrt{x}+4}\)

    giải:

    a)

    \(L=\dfrac{12-x-\sqrt{x}}{\sqrt{x}+4}\\ L=\dfrac{12+3\sqrt{x}-x-4\sqrt{x}}{\sqrt{x}+4}\\ L=\dfrac{\left(3-\sqrt{x}\right)\left(4+\sqrt{x}\right)}{\sqrt{x}+4}\\ L=3-\sqrt{x}\)

    vì: \(\sqrt{x}\ge0\) nên \(L\le3\)

    đẳng thức xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

    b)

    ta có :L=2x

    \(\Rightarrow2x=\dfrac{12-x-\sqrt{x}}{\sqrt{x}+4}\\ \Leftrightarrow2x=3-\sqrt{x}\\ \Leftrightarrow2x+\sqrt{x}-3=0\\ \Leftrightarrow2x-2\sqrt{x}+3\sqrt{x}-3=0\\ \Leftrightarrow\left(\sqrt{x}-1\right)\left(2\sqrt{x}+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x}-1=0\\2\sqrt{x}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

    \(x\ge2\) nên phương trình vô nghiệm.

    P/s: điều kiện \(x\ge2;x\ne3\)có lẽ chỉ áp dụng vào câu b thôi

      bởi Nguyen Lan 21/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

 

YOMEDIA
1=>1