YOMEDIA
NONE

Giải phương trình 10căn(x^3+1)=3(x^2+2)

BT1: GPT:

\(10\sqrt{x^3+1}=3\left(x^2+2\right)\)

BT2: Biểu thức \(A=2x-2\sqrt{xy}+y-2\sqrt{x}+3\) có GTNN không? Vì sao

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Bài 1:

    ĐKXĐ: \(x\geq -1\)

    Ta có: \(10\sqrt{x^3+1}=3(x^2+2)\)

    \(\Leftrightarrow 10\sqrt{(x+1)(x^2-x+1)}=3(x^2+2)\)

    Đặt \(\left\{\begin{matrix} \sqrt{x+1}=a\\ \sqrt{x^2-x+1}=b\end{matrix}\right.(a,b\geq 0)\)

    Khi đó: \(a^2+b^2=x^2+2\)

    PT trở thành: \(10ab=3(a^2+b^2)\)

    \(\Leftrightarrow (3a-b)(a-3b)=0\)

    \(\Rightarrow \left[\begin{matrix} 3a=b\\ a=3b\end{matrix}\right.\)

    Nếu \(3a=b\Leftrightarrow 3\sqrt{x+1}=\sqrt{x^2-x+1}\)

    \(\Rightarrow 9(x+1)=x^2-x+1\)

    \(\Leftrightarrow x^2-10x-8=0\Leftrightarrow x=5\pm \sqrt{33}\) (thỏa mãn)

    Nếu \(a=3b\Leftrightarrow \sqrt{x+1}=3\sqrt{x^2-x+1}\)

    \(\Rightarrow x+1=9(x^2-x+1)\)

    \(\Leftrightarrow 9x^2-10x+8=0\)

    \(\Leftrightarrow (3x-\frac{5}{3})^2+\frac{47}{9}=0\) (pt vô nghiệm)

    Vậy \(x=5\pm \sqrt{33}\)

      bởi Phương Trúc 16/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON