YOMEDIA
NONE

Giải hệ phương trình (II) bằng cách đặt ẩn phụ ( \(u = \dfrac{1}{x};v = \dfrac{1}{y}\)) rồi trả lời bài toán đã cho. \(\left( {II} \right)\,\,\left\{ \matrix{{\displaystyle{1 \over x}} = {\displaystyle{3 \over 2}}.{\displaystyle{1 \over y}} \hfill \cr {\displaystyle{1 \over x}} + {\displaystyle{1 \over y}} = {\displaystyle{1 \over {24}}} \hfill \cr} \right.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đặt \(u = \dfrac{1}{x};v = \dfrac{1}{y}\), hệ (II) trở thành:

    \(\eqalign{& \left( {II} \right)\,\,\left\{ \matrix{u = {\displaystyle{3 \over 2}}.v \hfill \cr u + v = {\displaystyle{1 \over {24}}} \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{u = {\displaystyle{3 \over 2}}v \hfill \cr {\displaystyle{3 \over 2}}v + v = {\displaystyle{1 \over {24}}} \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{u = {\displaystyle{3 \over 2}}v \hfill \cr {\displaystyle{5 \over 2}}v = {\displaystyle{1 \over {24}}} \hfill \cr}  \right.  \cr &  \Leftrightarrow \left\{ \matrix{u = {\displaystyle{3 \over 2}}v \hfill \cr v = {\displaystyle{1 \over {60}}} \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{u = {\displaystyle{1 \over {40}}} \hfill \cr v = {\displaystyle{1 \over {60}}} \hfill \cr}  \right. \cr} \) 

    Khi đó ta có: 

    \(\left\{ \begin{array}{l}
    \dfrac{1}{x} = \dfrac{1}{{40}}\\
    \dfrac{1}{y} = \dfrac{1}{{60}}
    \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
    x = 40\\
    y = 60
    \end{array} \right.\) 

    Vậy số ngày để đội A làm 1 mình xong đoạn đường đó là 40 ngày

    Số ngày để đội B làm 1 mình xong đoạn đường đó là 60 ngày 

      bởi Anh Trần 18/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON