YOMEDIA
NONE

Tìm số nguyên n để 2n+1/n-1 là số nguyên

a) Tìm \(n\in Z\) để \(\dfrac{2n+1}{n-1}\in Z\) ( giải theo kiểu kẻ bảng )

b) Tìm \(n\in Z\) để \(\dfrac{n^2+1}{n+2}\in Z\) ( giải theo kiểu kẻ bảng )

c) Tìm \(n\in Z\) để \(\dfrac{n^2-3n+2}{n+1}\in Z\) ( giải theo kiểu kẻ bảng )

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(\dfrac{2n+1}{n-1}=\dfrac{2n-2+3}{n-1}=\dfrac{2n-2}{n-1}+\dfrac{3}{n-1}=2+\dfrac{3}{n-1}\)

    \(\Rightarrow3⋮n-1\Rightarrow n-1\inƯ\left(3\right)\)

    \(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)

    Xét ước

    \(n^2+1⋮n+2\)

    \(\Rightarrow n^2+2n-2n+1⋮n+2\)

    \(\Rightarrow n^2+2n-2n-4+5⋮n+2\)

    \(\Rightarrow n\left(n+2\right)-2\left(n+2\right)+5⋮n+2\)

    \(\Rightarrow\left(n-2\right)\left(n+2\right)+5⋮n+2\)

    \(\Rightarrow5⋮n+2\)

    \(\Rightarrow n+2\inƯ\left(5\right)\)

    \(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)

    Xét ước

    \(\dfrac{n^2-3n+2}{n+1}\)

    \(\Rightarrow n^2-3n+2⋮n+1\)

    \(\Rightarrow n^2+n-4n+2⋮n+1\)

    \(\Rightarrow n^2+n-4n-4+6⋮n+1\)

    \(\Rightarrow n\left(n+1\right)-4\left(n+1\right)+6⋮n+1\)

    \(\Rightarrow\left(n-4\right)\left(n+1\right)+6⋮n+1\)

    \(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\)

    \(Ư\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

    Xét ước

      bởi Nguyen Hai 07/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON