Tìm GTNN của biểu thức P=a^2+b^2+33/ab
Cho a;b > 0
a + b = 4
Tìm GTNN của P = a2+b2+\(\dfrac{33}{ab}\)
Trả lời (1)
-
Áp dụng BĐT AM-GM ta có:
\(a+b\ge2\sqrt{ab}\ge4\Rightarrow4ab\ge16\Rightarrow ab\ge4\left(1\right)\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2=16\)
\(\Rightarrow2\left(a^2+b^2\right)\ge16\Rightarrow a^2+b^2\ge8\left(2\right)\)
\(\left(1\right)+\left(2\right)=P\ge8+\dfrac{33}{4}=16\dfrac{1}{4}\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=4\end{matrix}\right.\)\(\Rightarrow a=b=2\)
Vậy \(A_{Min}=16\dfrac{1}{4}\) khi \(a=b=2\)
bởi Lương Tâm 22/01/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời