YOMEDIA
NONE

Thu gọn và sắp xếp các số hạng của đa thức theo lũy thừa tăng của biến. Tìm hệ số cao nhất, hệ số tự do: \(\displaystyle 2{{\rm{x}}^2} - 3{{\rm{x}}^4} - 3{{\rm{x}}^2}\)\(\displaystyle - 4{{\rm{x}}^5} - {1 \over 2}x - {x^2} + 1\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(\displaystyle  \,2{{\rm{x}}^2} - 3{{\rm{x}}^4} - 3{{\rm{x}}^2} \)\(\displaystyle - 4{{\rm{x}}^5} - {1 \over 2}x - {x^2} + 1 \)

    \(\displaystyle =(2x^2-3x^2-x^2)-3x^4\)\(\displaystyle -4x^5-\dfrac{1}{2}x+1\)

    \(\displaystyle =(2-3-1).x^2-3x^4\)\(\displaystyle -4x^5-\dfrac{1}{2}x+1\)

    \(\displaystyle = - 2{{\rm{x}}^2} - 3{{\rm{x}}^4} - 4{{\rm{x}}^5} - {1 \over 2}x + 1  \)

    Sắp xếp: \(\displaystyle 1 - {1 \over 2}x - 2{{\rm{x}}^2} - 3{{\rm{x}}^4} - 4{{\rm{x}}^5}\)

    Hệ số cao nhất là \(\displaystyle -4,\) hệ số tự do là \(\displaystyle 1.\)

      bởi Bánh Mì 02/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON