YOMEDIA
NONE

Chứng tỏ rằng \(\sqrt 2 \) là số vô tỉ.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Giả sử \(\sqrt 2 \) là số hữu tỉ.

    Như vậy, \(\sqrt 2 \) có thể viết được dưới dạng \(\dfrac{m}{n}\) với \(m,n \in \mathbb{N}\) và \((m,n) = 1\).

    Ta có:  \(\sqrt 2  = \dfrac{m}{n}\) nên \({\left( {\sqrt 2 } \right)^2} = {\left( {\dfrac{m}{n}} \right)^2}\) hay \(2 = \dfrac{{{m^2}}}{{{n^2}}}\). Suy ra: \({m^2} = 2{n^2}\).

    Mà \((m,n) = 1\) nên \({m^2}\) chia hết cho 2 hay m chia hết cho 2. Do đó \(m = 2k\) với \(k \in \mathbb{N}\) và \((k,n) = 1\).

    Thay \(m = 2k\) vào \({m^2} = 2{n^2}\) ta được: \(4{k^2} = 2{n^2}\) hay \({n^2} = 2{k^2}\).

    Do \((k,n) = 1\) nên \({n^2}\) chia hết cho 2 hay n chia hết cho 2.

    Suy ra m và n đều chia hết cho 2 mâu thuẫn với \((m,n) = 1\).

    Vậy \(\sqrt 2 \) không là số hữu tỉ mà là số vô tỉ. 

      bởi Nguyễn Quang Minh Tú 26/11/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON