Chứng minh với mọi số tự nhiên n > = 2 thì số 2^2^n+1 có tận cùng bằng 7
1, Chứng minh rằng với mọi số tự nhiên n \(\ge\) 2 thì số \(2^{2^n}\) + 1 tận cùng bằng 7
HELP ME !!!!!! AI ĐÚNG THÌ MK TẶNG 3 TICK NHA
Trả lời (1)
-
Lời giải:
Với \(n\geq 2\Rightarrow 2^n\vdots 4\) nên đặt \(2^n=4t\)
Khi đó \(2^{2^n}+1=2^{4t}+1=16^t+1\)
\(16^t+1=(15+1)^t+1\)
Theo khai triển thì \((15+1)^t\) sẽ chia $5$ dư $1$, do đó \(2^{2^n}+1=16^t+1\) chia $5$ dư $2$
Đặt \(2^{2^n}+1=5k+2\). Vì \(2^{2^n}+1\) lẻ nên \(5k\) lẻ, do đó \(k\) lẻ.
Đặt \(k=2m+1\Rightarrow 2^{2^n}+1=5(2m+1)+2=10m+7\)
Do đó \(2^{2^n}+1(n\geq 2)\) luôn có tận cùng là $7$
bởi Nguyễn John 04/04/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời