YOMEDIA
NONE

Chứng minh ta có tỉ lệ thức a/b=c/d nếu có 1 trong các đẳng thức sau

Chứng minh rằng ta có tỉ lệ thức a/b=c/d nếu có một trong các đẳng thức sau(giả thiết các tỉ lệ thức đều có nghĩa):

(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)

    \(\Leftrightarrow\dfrac{a+b+c+d}{a-b+c-d}=\dfrac{a+b-c-d}{a-b-c+d}\)

    Theo tính chất dãy tỉ số bằng nhau :

    \(\dfrac{a+b+c+d}{a-b+c-d}=\dfrac{a+b-c-d}{a-b-c+d}=\dfrac{\left(a+b+c+d\right)+\left(a+b-c-d\right)}{\left(a-b+c-d\right)+\left(a-b-c+d\right)}=\dfrac{\left(a+b+c+d\right)-\left(a+b-c-d\right)}{\left(a-b+c-d\right)-\left(a-b-c+d\right)}\)

    \(\Leftrightarrow\dfrac{2a+2b}{2a-2b}=\dfrac{2c+2d}{2c-2d}\Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

    Áp dụng tính chất thêm một lần nữa , có :

    \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\dfrac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}\)

    \(\Leftrightarrow\dfrac{2a}{2c}=\dfrac{2b}{2d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

      bởi nguyen yen 08/04/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON