YOMEDIA
NONE

Chứng minh nếu a/b < c/d thì ad < bc biết a/b và c/d là 2 số hữu tỉ

Cho hai số hữu tỉ \(\dfrac{a}{b}\)\(\dfrac{c}{d}\) ( b > 0 , d > 0 ) . Chứng tỏ rằng :

a) Nếu \(\dfrac{a}{b}\)< \(\dfrac{c}{d}\) thì ad < bc ;

b) Nếu ad < bc thì \(\dfrac{a}{b}\)< \(\dfrac{c}{d}\).

Giúp mk nha mk đag cần gấp lắm . bucminh

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có: \(\dfrac{a}{b}\)\(\dfrac{c}{d}\left(b>0,d>0\right)\)

    a) Giả sử: +) \(\dfrac{a}{b}=\dfrac{c}{d}\) \(\Rightarrow\) \(ad=bc\) (nhân chéo)

    \(\Rightarrow\) nếu \(\dfrac{a}{b}< \dfrac{c}{d}\) thì \(ad< bc.\)

    b) Giả sử \(ad=bc\) \(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

    \(\Rightarrow\) nếu \(ad< bc\) thì \(\dfrac{a}{b}< \dfrac{c}{d}.\)

      bởi Trương Tuấn Linh 18/04/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON