Chứng minh góc ADF=EDC biết tam giác ABC vuông tại A có phân giác BD
BÀI 1: cho tam giác ABC vuông ở C có góc A = 60 độ. tia phân giác của góc BAC cắt BC ở E. kẻ EK \(\perp\)AB (K\(\in\)AB). kẻ BD vuông góc với AE (D \(\in\)AE)
a) AC=AK ; AE \(\perp\)CK
b) KA = KB
c) EB >AC
d) ba đường thẳng AC, BD, KE cùng đi qua một điểm.
BÀI 2: cho tam giác ABC vuông tại A, đường phân giác BD. kẻ DE\(\perp\)BC (E \(\in\)BC). trên tia đối của tia AB lấy điểm F sao cho AF = CE.
a) \(\Delta\)ABD = \(\Delta\)EBD
b) BD là đường trung trực của AE
c) AD<DC
d) \(\widehat{ADF}\) = \(\widehat{EDC}\) và E, D, F thẳng hàng.
BÀI 3: cho tam giác ABC cân tại A ( góc A = 90 độ). kẻ BD\(\perp\)AC (D\(\in\)AC), CE \(\perp\)AB (E \(\in\)AB), BD và CE cắt nhau tại H.
a) BD = CE
b) tam giác BHC cân
c) AH là đường trung trực của BC
d) trên tia BD lấy điểm K sao cho D là trung điểm của BK. so sánh: góc ECB và góc DKC
* cả 3 bài vẽ hình
Trả lời (1)
-
Bài 2:
Giải:
a) Xét \(\Delta ABD,\Delta EBD\) có:\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
\(\widehat{A_1}=\widehat{E_1}=90^o\)
BD: cạnh huyền chung
\(\Rightarrow\Delta ABD=\Delta EBD\) ( c.huyền - g.nhọn ) ( đpcm )
b) Gọi giao điểm giữa AE và BD là I
Vì \(\Delta ABD=\Delta EBD\Rightarrow AB=BE\) ( cạnh t/ứng )
\(\Rightarrow AD=DE\) ( cạnh t/ứng )
\(\Rightarrow BD\) là trung trực của AE ( đpcm )
c) Trong \(\Delta DEC\left(\widehat{E_2}=90^o\right)\Rightarrow DC>DE\)
Mà AD = DE ( theo b )
\(\Rightarrow DC>AD\left(đpcm\right)\)
d) Ta có: \(\widehat{D_2}+\widehat{ADE}=180^o\) ( kề bù )
Mà \(\widehat{D_1}=\widehat{D_2}\left(gt\right)\)
\(\Rightarrow\widehat{D_1}+\widehat{ADE}=\widehat{FDE}=180^o\)
\(\Rightarrow E,D,F\) thẳng hàng ( đpcm )
Vậy...
bởi Nguyễn Ngọc Khánh Linh 12/04/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời