YOMEDIA
NONE

Chứng minh căn 15 là số vô tỉ

Chứng minh rằng \(\sqrt{15}\) là một số vô tỉ.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Giả sử \(\sqrt{15}\)là 1 số hữu tỉ thì

    => \(\sqrt{15}\)= \(\dfrac{m}{n}\)(Trong đó \(\dfrac{m}{n}\)là phân số tối giản)=> \(15=\dfrac{m^2}{n^2}\) hay \(15n^2=m^2\).

    Dựa vào đó => \(m^2⋮\)15 => m\(⋮\)15.

    Đặt \(m=15k\left(k\in Z\right)\)=> \(m^2=225k^2\).

    Vậy => \(15n^2=225k^2\)=> \(n^2=15k^2\).

    Vậy => \(n^2⋮15\)=> \(n⋮15\).

    Từ đó => \(\dfrac{m}{n}\)không phải là phân số tối giản trái với giả thiết => \(\sqrt{15}\)không phải là số hữu tỉ.

    Vậy \(\sqrt{15}\)là số vô tỉ.

      bởi Hằng Đặng 02/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON