Chứng minh AC-AB > CE-BD biết tam giác ABC có góc B > góc C
cho tam giác ABC có góc B > góc C . Hai đường cao BD và CE. chứng minh :AC-AB>CE-BD
Trả lời (1)
-
Cho tam giác ABC có góc B > góc C, hai đường cao BD và CE. Chứng minh rằng
AC - AB > CE - BD
Thêm điều kiện AC-EC>AB-BD
Giải
Ta thấy AC>EC(Theo quan hệ giữa đường vuông góc và đường xiên trong tam giác)
=>AC=EC+y
Ta lại thấy tiếp AB>BD(Theo quan hệ giữa đường vuông góc và đường xiên trong tam giác)
=>AB=BD+x
Vậy áp dụng phần trên và công thức ta sẽ có:AC-AB=EC+y-(BD+x)
=>EC-BD+y-x mà AC-EC>AB-BD hay y>x =>EC-BD+y-x>EC-BD.(Điều này luôn đúng với y>x)
=>AC-AB>EC-BD
*Lưu ý:AC>AB do $\hat{B}$>$\hat{C}$ rồi suy ra theo quan hệ giữa góc và cạnh đối diện.Ở đây ta xét th CE>BD nếu CE<BD=>CE-BD là số âm,còn AC-AB là sô nguyên dương(do AB<AC)=>AC-AB>CE-BD(điều này cũng luôn đúng)Vậy dù hai th CE>BD hay BD>CE thì điều c/m luôn đúng với đề bài.bởi Nguyễn Vi Hà Trang 29/03/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời