Chứng minh a-b và 2a+2b+1 là số chính phương biết 2a^2+a=3b^2+b
Cho a;b thuộc N và \(2a^2+a=3b^2+b\)
CMR : a-b và 2a+2b+1 là SCP.
Trả lời (1)
-
\(2a^2+a=3b^2+b\Rightarrow2a^2-2b^2+a-b=b^2\)
\(\Rightarrow2.\left(a-b\right).\left(a+b\right)+\left(a-b\right)=b^2\)
\(\Rightarrow\left(a-b\right).\left(2a+2b+1\right)=b^2\left(1\right)\)
Gọi \(d=ƯCLN ( a-b;2a+2b+1)\)
\(\Rightarrow a-b\) chia hết cho d và \(2a+2b+1\) chia hết cho d.
\(\Rightarrow b^2=\left(a-b\right).\left(2a+2b+1\right)\) chia hết cho \(d^2.\)
\(\Rightarrow b\) chia hết cho d.
Lại có: \(2.(a-b)-(2a+2b+1)\) chia hết cho d.
\(\Rightarrow d=-4b-1\) chia hết cho d.
\(\Rightarrow1\) chia hết cho d.
\(\Rightarrow d=1\)
\(\Rightarrow a-b\) và \((2a+2b+1)\) nguyên tố cùng nhau. ( 2 )
Từ ( 1 ) và ( 2 ) suy ra: \(a-b\) và \(2a+2b+1\) là số chính phương. ( đpcm )
bởi Chishikatoji Huỳnh 02/01/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời