YOMEDIA
NONE

Chứng minh 10^2006+53/9 là một số tự nhiên

CMR: \(\dfrac{10^{2006}+53}{9}\) là một số tự nhiên.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • theo đề ta có:

    \(\dfrac{10^{2006}+53}{9}=\dfrac{10^{2^{1003}}+53}{9}\)

    = \(\dfrac{100^{^{1003}}+53}{9}\)

    \(10^{???}\) thì cũng ra kết quả có chữu số tận cùng là 0 và chữ số đầu là 1

    Vậy: Nên ta có thể làm như sau

    = \(\dfrac{100^{^{ }}+53}{9}\)

    =\(17\)

    và 17 là 1 số tự nhiên

    có thể thử bất kì số 1000, 1000000, ..+ 53 \(⋮\) 9

      bởi aggđsag hdhdfhfhs 08/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON