YOMEDIA
NONE

Bài 8.6* trang 23 sách bài tập toán 7 tập 1

Bài 8.6* - Bài tập bổ sung (Sách bài tập - tập 1 - trang 23)

Biết rằng :

                \(\dfrac{bz-cy}{z}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

Hãy chứng minh :

                     \(x:y:z=a:b:c\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

    \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

    \(=\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}\)

    \(=\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)

    \(=\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)

    \(=\dfrac{0}{a^2+b^2+c^2}=0\)

    \(\Rightarrow abz-acy=bcx-abz=acy-bcx\)

    \(\Rightarrow a\left(bz-cy\right)=b\left(cx-az\right)=c\left(ay-bx\right)\)

    \(\Rightarrow bz-cy=cx-az=ay-bx\)

    \(\Rightarrow\left\{{}\begin{matrix}bx=cy\\cx=az\\ay=bx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{c}=\dfrac{y}{b}\\\dfrac{x}{a}=\dfrac{z}{c}\\\dfrac{y}{b}=\dfrac{x}{a}\end{matrix}\right.\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

    Vậy \(x:y:z=a:b:c\)

      bởi Hà Văn Thắng 26/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON