YOMEDIA
NONE

Chứng minh đẳng thức cho sau (với \(n \in N*\) ): \({1^2} + {3^2} + {5^2} + ... + {\left( {2n - 1} \right)^2} = \dfrac{{n\left( {4{n^2} - 1} \right)}}{3};\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đặt vế trái bằng \({S_n}.\)

    +) Với \(n = 1,\) vế trái chỉ có một số hạng bằng 1, vế phải bằng \(\dfrac{{1\left( {4.1 - 1} \right)}}{3} = 1.\)

    +) Giả sử đã có \({S_k} = \dfrac{{k\left( {4{k^2} - 1} \right)}}{3}\) với\(k \ge 1.\) Ta phải chứng minh \({S_{k + 1}} = \dfrac{{\left( {k + 1} \right)\left[ {4{{\left( {k + 1} \right)}^2} - 1} \right]}}{3}.\)

    Thật vậy, ta có

    \({S_{k + 1}} = {S_k} + {\left[ {2\left( {k + 1} \right) - 1} \right]^2}\) \( = {S_k} + {\left( {2k + 1} \right)^2}\) \({\rm{ = }}\dfrac{{k\left( {4{k^2} - 1} \right)}}{3} + {\left( {2k + 1} \right)^2}\) \( = \dfrac{{k\left( {2k - 1} \right)\left( {2k + 1} \right) + 3{{\left( {2k + 1} \right)}^2}}}{3}\) \( = \dfrac{{\left( {2k + 1} \right)\left[ {k\left( {2k - 1} \right) + 3\left( {2k + 1} \right)} \right]}}{3}\) \({\rm{ = }}\dfrac{{\left( {2k + 1} \right)\left( {2{k^2} + 5k + 3} \right)}}{3}\) \( = \dfrac{{\left( {2k + 1} \right)\left( {k + 1} \right)\left( {2k + 3} \right)}}{3}\)

    \(\begin{array}{l}
    = \dfrac{{\left( {k + 1} \right)\left( {4{k^2} + 8k + 3} \right)}}{3}\\
    = \dfrac{{\left( {k + 1} \right)\left[ {4\left( {{k^2} + 2k + 1} \right) - 1} \right]}}{3}
    \end{array}\)

    \( = \dfrac{{\left( {k + 1} \right)\left[ {4{{\left( {k + 1} \right)}^2} - 1} \right]}}{3}\)

    Suy ra đpcm.

      bởi Anh Thu 21/11/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON