YOMEDIA
NONE

Cho dãy số (\({u_n}\)) có \({u_n} = - {n^2} + n + 1\). Khẳng định nào sau đây là đúng?

A. 5 số hạng đầu của dãy là −1; 1; −5; −11; −19.

B. Số hạng thứ n+1 là: un+1 = − n2 + n + 2.

C. Số hạng thứ 10 của dãy số là : u10 = 89

D. Là một dãy số giảm.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta xét các phương án:

    + 5 số hạng đầu tiên của dãy số là: 1; −1; −5; −11; −19

    + Số hạng thứ n+ 1 của dãy số là un + 1 = −(n+1)2 + (n+1) + 1 = −n2 − n + 1

    + Số hạng thứ 10 của dãy số là : u10 = −89

    + Xét hiệu T = un+1 − un = (−n2 − n + 1) − (−n2 + n + 1)= −2n < 0 với ∀n ≥ 1

    Do đó (un) là một dãy giảm.

    Chọn D.

      bởi hi hi 25/01/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON