Cho \(a^2+b^2\leq a+b\). Tìm GTLN của P = a+2b.
Hôm qua làm kiểm tra 1 tiết Toán, mình giải không biết đúng hay sai nữa!
Cho \(a^2+b^2\leq a+b\). Tìm GTLN của P = a+2b.
Trả lời (1)
-
\(a^2+b^2\leq a+b\Leftrightarrow a^2-a+b^2-b\leq 0\)
\(\Leftrightarrow (a-\frac{1}{2})^2+(b-\frac{1}{2})^2\leq \frac{1}{2}\)
Đặt \((a-\frac{1}{2})^2+(b-\frac{1}{2})^2=R^2\)
\(a-\frac{1}{2}=Rsint \ \ \ t\in [-\pi;\pi]\)
\(b-\frac{1}{2}=Rcost\)
Ta có \(R^2\leq \frac{1}{2}\)
\(P=\frac{1}{2}+Rsint+2(\frac{1}{2}+Rcost)\)
\(=\frac{3}{2}+Rsint+2Rcost\)
\(\Rightarrow Rsint+2Rcost=P-\frac{3}{2}\)
Phương trình có nghiệm t \(\Leftrightarrow R^2+4R^2\geq (P-\frac{3}{2})^2\)
\(\Leftrightarrow (P-\frac{3}{2})^2\leq 5R^2\leq \frac{5}{2}\)
\(-\sqrt{\frac{5}{2}}\leq P-\frac{3}{2}\leq \sqrt{\frac{5}{2}}\)
\(\frac{3}{2}-\sqrt{\frac{5}{2}}\leq P\leq \frac{3}{2}+ \sqrt{\frac{5}{2}}\)
GTLN \(P= \frac{3}{2}+ \sqrt{\frac{5}{2}}\)bởi thủy tiên 09/02/2017Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời