Qua bài này, các em sẽ được làm quen với các bài tập liên quan đến mạch điện xoay chiều với nhiều cấp độ từ dễ đến khó…, các em cần phải nắm được kiến thức về giá trị tức thời và các công thức liên quan đến giá trị tức thời, từ đó vận dụng và hoàn thành tốt bài tập.
-
Video liên quan
-
Nội dung
-
Bài 1: Tìm khoảng đơn điệu của hàm số
Bài 1: Tìm khoảng đơn điệu của hàm số
Bài giảng sẽ giúp các em nắm được kiến thức cơ bản về cách tìm khoảng đơn điệu của hàm số như: Định nghĩa Điều kiện đủ để hàm số đơn điệu Các bước tìm khoảng đơn điệu của hàm số00:55:29 5168 TS. Phạm Sỹ Nam
-
Bài 2: Tìm tham số để hàm số đơn điệu trên một miền
Bài 2: Tìm tham số để hàm số đơn điệu trên một miền
Bài giảng sẽ giúp các em nắm được kiến thức cơ bản về cách tìm tham số để hàm số đơn điệu trên một miền như: Công thức tính. Điều kiện đủ để hàm số đơn điệu trên một miền.00:28:42 1080 TS. Phạm Sỹ Nam
-
Bài 3: Ứng dụng tính đơn điệu giải phương trình
Bài 3: Ứng dụng tính đơn điệu giải phương trình
Bài giảng sẽ giúp các em nắm kỹ hơn về lý thuyết và một số ví dụ cụ thể về ứng dụng tính đơn điệu giải phương trình.00:32:49 1080 TS. Phạm Sỹ Nam
-
Bài 4: Ứng dụng tính đơn điệu giải bất phương trình
Bài 4: Ứng dụng tính đơn điệu giải bất phương trình
Bài giảng Ứng dụng tính đơn điệu giải bất phương trình sẽ giúp các em nắm được lý thuyết và bài tập để các em củng cố kiến thức.00:32:29 870 TS. Phạm Sỹ Nam
-
Bài 5: Ứng dụng tính đơn điệu giải hệ phương trình
Bài 5: Ứng dụng tính đơn điệu giải hệ phương trình
Bài giảng Ứng dụng tính đơn điệu giải hệ phương trình sẽ giúp các em nắm kỹ hơn cách giải hệ phương trình, cách tìm tính nghịch biến, đồng biến về tính đơn điệu của hệ phương trình.00:29:14 946 TS. Phạm Sỹ Nam
-
Bài 6: Ứng dụng tính đơn điệu chứng minh bất đẳng thức
Bài 6: Ứng dụng tính đơn điệu chứng minh bất đẳng thức
Bài giảng ứng dụng tính đơn điệu chứng minh bất đẳng thức gồm có 2 phần nội dung chính: Lý thuyết Các ví dụ cụ thể nhằm giúp các em chứng minh được đồng biến và nghịch biến.00:43:58 1076 TS. Phạm Sỹ Nam
Xét mạch RLC nối tiếp
Nếu \(i=I_0cos(\omega t+\varphi _i)\)
\(\Rightarrow \left\{\begin{matrix} u_R=U_{OR}cos(\omega t+\varphi _i)\\ u_L=U_{OL}cos(\omega t+\varphi _i+\frac{\pi}{2})\\ u_C=U_{OC}cos(\omega t+\varphi _i-\frac{\pi}{2}) \end{matrix}\right.\)
uR cùng pha \(i\Rightarrow u_R=iR\Leftrightarrow i=\frac{u_R}{R}\)
uL vuông pha \(i\Rightarrow \left ( \frac{u_L}{U_{0L}} \right )+\left ( \frac{i}{I_0} \right )^2=1\)
uC vuông pha \(i\Rightarrow \left ( \frac{u_C}{U_{0C}} \right )+\left ( \frac{i}{I_0} \right )^2=1\)
uR vuông pha \(u_L \Rightarrow \left ( \frac{u_R}{U_{OR}} \right )^2+ \left ( \frac{u_L}{U_{OL}} \right )^2=1\)
uR vuông pha \(u_C \Rightarrow \left ( \frac{u_R}{U_{OR}} \right )^2+ \left ( \frac{u_C}{U_{OC}} \right )^2=1\)
uR ngược pha \(u_C \Rightarrow \left\{\begin{matrix} u_L=U_{OL}cos(\omega t+\varphi )\\ u_C=U_{OCL}cos(\omega t+\varphi ) \end{matrix}\right.\Rightarrow \frac{u_L}{u_C} =\frac{U_{OL}}{U_{OC}} =\frac{Z_L}{Z_C}\)
* Chú ý:
\(U_{OL}=U_L\sqrt{2}, \ \ I_O=I \sqrt{2}\)
\(\Rightarrow \left ( \frac{u_L}{U_{OL}} \right )+\left ( \frac{i}{I_O} \right )^2=1 \Rightarrow \left ( \frac{u_L}{U_{L}} \right )+\left ( \frac{i}{I} \right )^2=2\)
* Viết biểu thức:
+ Nếu đề cho \(u_{MN}=U_{OMN}.cos(\omega t+\varphi_{u_{MN}} )\)
\(\rightarrow\) Yêu cầu viết biểu thức:
Ta có: \(i=I_O cos(\omega t+\varphi _i)\)
+ Tìm \(Z_{MN}\Rightarrow I_O=\frac{U_{OMN}}{Z_{MN}}\)
+ Tìm \(tan\varphi _{MN}\Rightarrow \varphi _{MN}\Rightarrow \varphi _i=\varphi _{u_{MN}}-\varphi _{MN}\)
Vậy \(i=I_O cos(\omega t+\varphi _i)\)
+ Nếu đề cho \(i=I_O cos(\omega t+\varphi _i)\)
\(\rightarrow\) Yêu cầu viết biểu thức \(u_{MN}\)?
+ Tìm \(Z_{MN}\Rightarrow U_{OMN}=I_O.Z_{MN}\)
+ Tìm \(tan\varphi _{MN}\Rightarrow \varphi _{MN}\Rightarrow \varphi _{u_{MN}} =\varphi _i+\varphi _{MN}\)
Vậy \(u_{MN}=U_{OMN} cos(\omega t + \varphi _{u_{MN}})\)
+ Nếu đề cho u1 \(\rightarrow\) Yêu cầu viết u2?
Từ u1 \(\rightarrow\) Viết biểu thức i \(\rightarrow\) Viết u2
VD1: Đặt điện áp \(u=200\sqrt{2}cos(100\pi t + \frac{\pi }{6}) (v)\) vào 2 đầu tụ \(C=\frac{10^{-4}}{\pi}F\)
a. Viết biểu thức i?
b. Tại thời điểm \(u=10\sqrt{6}(V)\) thì cường độ dòng điện i bằng bao nhiêu?
Giải
a.
\(Z_C=\frac{1}{C.\omega }=\frac{1}{\frac{10^{-4}}{\pi}.100\pi}=100\Omega\)
\(I_O=\frac{U_{OC}}{Z_C}=\frac{200\sqrt{2}}{100}=2\sqrt{2}A\)
\(\varphi _{u_{C}}=\varphi _i-\frac{\pi}{2}\Rightarrow \varphi _i=\varphi _{u_{C}}+ \frac{\pi}{2}=\frac{\pi}{6}+\frac{\pi}{2}=\frac{2\pi}{3}\)
Vậy \(i=2\sqrt{2}.cos(100\pi t + \frac{2 \pi}{3}) (A)\)
b.\(u_C\perp i\Rightarrow \left ( \frac{u_C}{U_{OC}} \right )^2+\left ( \frac{i}{I_O } \right )^2=1\)
\(\Rightarrow i=\pm I_O\sqrt{1-\left ( \frac{u_C}{U_{O}} \right )^2}=\pm 2\sqrt{2} \sqrt{1-\left ( \frac{100\sqrt{6}}{200\sqrt{2}} \right )^2}\)
\(\Rightarrow i=\pm 2\sqrt{2}.\frac{1}{2}=\pm \sqrt{2}(A)\)
VD2: Đặt điện áp \(u=200cos(100\pi t-\frac{\pi}{4})(V)\) vào 2 đầu mạch RLC ghép nối tiếp có \(R = 50\Omega, L=318mH, C=63,6\mu F\). Viết biểu thức \(i, u_R, u_C, u_{RC}, u_{LC}\).
Giải
\(Z_L=L.\omega =318.10^{-3}.100 \pi=100\Omega\)
\(Z_C=\frac{1}{C.\omega} =\frac{1}{63,6.10^{-6}.100 \pi}=50\Omega\)
\(Z=\sqrt{R^2+(Z_L-Z_C)^2}=\sqrt{50^2+(100-50)^2}=50\sqrt{2}\Omega\)
\(\Rightarrow I_O=\frac{U_O}{Z}=\frac{200}{50\sqrt{2}}=2\sqrt{2}A\)
\(tan\varphi =\frac{Z_L-Z_C}{R}=\frac{100-50}{50}=1\Rightarrow \varphi =\frac{\pi }{4}\)
\(\Rightarrow \varphi _i=\varphi _u-\varphi =-\frac{\pi}{4}-\frac{\pi}{4}=-\frac{\pi}{2}\)
Vậy \(i=2\sqrt{2}.cos(100\pi t-\frac{\pi}{2})(A)\)
\(u_R=100\sqrt{2}.cos(100\pi t-\frac{\pi}{2})(v)\)
\(u_L=200\sqrt{2}.cos(100\pi t-\frac{\pi}{2}+\frac{\pi}{2})(v)\)
\(u_C=100\sqrt{2}.cos(100\pi t-\frac{\pi}{2}-\frac{\pi}{2})(v)\)
\(u_{RC}=U_{ORC}.cos(\omega t+\varphi _{u_{RC}})\)
\(Z_{RC}=\sqrt{R^2+Z_L^2}=\sqrt{50^2+50^2}=50\sqrt{2}\Omega\)
\(\Rightarrow U_{ORC}=I_{RC}=2\sqrt{2}.50\sqrt{2}=200V\)
\(tan\varphi _{RC}=\frac{-Z_C}{R}=\frac{-50}{50}=-1\Rightarrow \varphi _{RC}=-\frac{\pi }{4}\)
\(\Rightarrow \varphi _{u_{RC}}=\varphi _i+\varphi _{RC}=-\frac{\pi}{2}+(-\frac{\pi}{4} )=-\frac{3\pi}{4}\)
Vậy \(u_{RC}=200.cos(100\pi t-\frac{3 \pi}{4})(V)\)
Viết \(u_{LC}=U_{OLC}.cos (\omega t+\varphi _{u_{LC}})\)
\(U_{OLC}=I_O.Z_{LC}\left | Z_L-Z_C \right |=2\sqrt{2}.\left | 100-50 \right |=100\sqrt{2}\)
\(tan\varphi _{LC}=\frac{Z_L-Z_C}{O}=\frac{50}{0}=\infty \Rightarrow \varphi _{LC}=\frac{\pi}{2}\)
\(\Rightarrow \varphi _{u_{LC}}=\varphi _i+\varphi _{LC}=-\frac{\pi}{2}+\frac{\pi}{2}=0\)
Vậy \(u_{LC}=100\sqrt{2}.cos.100\pi t (V)\)
Cài đặt:
\(shift\rightarrow mode\rightarrow 4\rightarrow R\)
\(mode\rightarrow 2\rightarrow CMPLX\)
\(u=U_O cos(\omega t + \varphi _u)\rightarrow U_O< \varphi _u\)
\(i=I_O cos(\omega t + \varphi _i)\rightarrow I_O<\varphi _i\)
\(Z=\sqrt{R^2+(Z_L-Z_C)^2}\rightarrow R+(Z_L-Z_C)i\)
Viết i
\(i=\frac{u}{Z}=\frac{U_O<\varphi _u}{R+(Z_L-Z_C)i}=\frac{U_{ORC}< \varphi _{u_{RC}}}{R-Z_Ci }=\frac{u_{ORL}<\varphi _{u_{RL}}}{R+Z_L.i}\)
\(=\frac{U_{OL}<\varphi _{u_{L}}}{Z_L.i}=\frac{U_{OC}<\varphi _{u_{C}}}{-Z_C.i}=...\)
Viết u:
\((I_O<\varphi _i).[R+(Z_L-Z_C)i]\)
\(\rightarrow (I_O<\varphi _i).(R-Z_C.i)=U_{ORC}<\varphi _{i_{RC}}\)Tìm Z:
\(\frac{U_O<\varphi _u}{I_O<\varphi _i}=R+(Z_L-Z_C)i\)
Chú ý:
\(shift\rightarrow 2\rightarrow 3=r<\) Đ
\(shift\rightarrow 2\rightarrow 4=a+bi\)